, Volume 26, Issue 2, pp 121–144 | Cite as

Specifics of Neoarchean Plume–Lithospheric Processes in the Kola–Norwegian Province of the Fennoscandian Shield: I. Composition and Age of the Komatiite–Tholeiite Association

  • A. B. Vrevskii


The paper reports newly obtained geological and isotopic-geochemical data on the volcano-sedimentary complex of the Uraguba Neoarchean greenstone structure in the Kola–Norwegian province of the Fennoscandian Shield. New U–Th–Pb geochronologic data (SIMS) on the metadacite (2790 ± 9 Ma) from a rock unit of interbedding metadacite, komatiite tuff, and lava breccia and on veins of plagioclase–microcline granite (2697 ± 10 and 2696 ± 9 Ma) that cuts the komatiite constrain the time span when supracrustal complex of the Uraguba structure was produced and underwent tectono-metamorphic transformations to approximately 100 Ma. The metavolcanic rocks of the komatiite–tholeiite association of the Uraguba structure belong to two distinct isotopic-geochemical types, which are spatially separated from one another and were produced by melting different mantle sources. Geological and isotopic-geochemical data indicate that the Uraguba structure is analogous to such unique tectonic structures on cratons as the Neoarchean Belingwe and Bulawayo belts in the Zimbabwe Shield, Kalgoorlie Belt in the Eastern Goldfilds province at the Yilgarn Craton, Kuhmo–Tipasjarvi Belt in the Karelian epi-Archean craton, and the Warawoona Paleoarchean Belt in the Pilbara Craton.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, A.T., Davis, A.M., and Lu, F., Evolution of the bishop tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts, J. Petrol., 2000, vol. 41, pp. 449–473.CrossRefGoogle Scholar
  2. Arestova, N.A., Lobach-Zhuchenko, S.B., and Chekulaev, V.P., Early Precambrian mafic rocks of the Fennoscandian shield as a reflection of plume magmatism: geochemical types and formation stages, Russ. J. Earth Sci., 2003, vol. 5, no. 3, pp. 145–163.CrossRefGoogle Scholar
  3. Komatiites, Arndt, N.T. and Nesbit, E.G., Eds., London: George Allen and Unwin, 1982.Google Scholar
  4. Arndt, N.T., Archean komatiites, Archean Crust Evolution, K.C. Condie, Ed., Amsterdam: Elsevier, 1994.Google Scholar
  5. Arndt, N.T., Lesher, C.M., Houl, M.G., et al., Intrusion and crystallization of a spinifex-textured komatiite sill in Dundonald Township, Ontario, J. Petrol., 2004, vol. 45, no. 12, pp. 2555–2571.CrossRefGoogle Scholar
  6. Le Bas, M.J., IUGS reclassification of the high-Mg and picritic volcanic rocks, J. Petrol., 2000, vol. 41, pp. 1467–1470.CrossRefGoogle Scholar
  7. Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., and Fisher, N.I., Igneous zircon: trace element composition as an indicator of source rock type, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 602–622.CrossRefGoogle Scholar
  8. Black, L.P., Kamo, S.L., Allen, C.M., et al., TEMORA 1: a new zircon standard for U–Pb geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.CrossRefGoogle Scholar
  9. Bondarenko, L.P. and Dagelaiskii, V.B., Geologiya i metamorfizm porod arkheya tsentral’noi chasti Kol’skogo poluostrova (Geology and Metamorphism of Archean Rocks in the Central Kola Peninsula), Leningrad: Nauka, 1968.Google Scholar
  10. Campbell, I.H. and Griffiths, R.W., Did the formation of “D” cause the Archaean–Proterozoic transition?, Earth Planet. Sci. Lett., 2014, vol. 388, pp. 1–8.CrossRefGoogle Scholar
  11. Condie, K.C., Changing tectonic settings through time: indiscriminate use of geochemical discriminant diagrams, Precambrian Res., 2015, vol. 266, pp. 587–591.CrossRefGoogle Scholar
  12. Condie, K.C., Aster, C.R., and Van Hunen, J., A great thermal divergence in the mantle beginning 2.5 Ga: geochemical constraints from greenstone basalts and komatiites, Geosci. Front., 2016, vol. 7, pp. 543–553.CrossRefGoogle Scholar
  13. Dobrzhinetskaya, L.F. Strukturno-metamorficheskaya evolyutsiya kol’skoi serii (Structural–Metamorphic Evolution of the Kola Group), Leningrad: Nauka, 1978.Google Scholar
  14. Fedotova, A.A., Bibikova, E.V., and Simakin, S.G., Ionmicroprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies, Geochem. Int., 2008, no. 9, pp. 912–927.CrossRefGoogle Scholar
  15. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.CrossRefGoogle Scholar
  16. Green, D.H., Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle, Phys. Chem. Mineral., 2015, vol. 42, pp. 95–122.CrossRefGoogle Scholar
  17. Gruau, G., Tourpin, S., Fourcade, S., et al., Loss of isotopic (Nd,O) and chemical (REE) memory during metamorphism of komatiites: new evidence from eastern Finland, Contrib. Mineral. Petrol., 1992, vol. 12, pp. 66–82.CrossRefGoogle Scholar
  18. Herzberg, C. and Gazel, E., Petrological evidence for secular cooling in mantle plumes, Nature, 2009, vol. 458, pp. 619–622.CrossRefGoogle Scholar
  19. Hölttä, P., Heilimo E., Huhma, H. et al., “Archaean complexes of the Karelia Province in Finland,” in The Archaean of the Karelia Province in Finland, Geol. Surv. Finland. Sp. Pap., 2012, vol. 54, pp. 21–73.Google Scholar
  20. Hoskin, P.W.O. and Schaltegger, U., Zircon, Rev. Mineral. Geochem., 2003, vol. 53, pp. 27–62.CrossRefGoogle Scholar
  21. Huhma, H., Mänttäri, I., Peltonen, P., et al., The age of the Archaean greenstone belts in Finland, Geol. Surv. Finland, Sp. Pap., 2012, vol. 54, pp. 74–175.Google Scholar
  22. Inoue, T., Rapp, R.P., Zhanget, J., et al., Garnet fractionation in a hydrous magma ocean and the origin of Aldepleted komatiites: melting experiments of hydrous pyrolite with REEs at high pressure, Earth Planet. Sci. Lett., 2000, vol. 177, pp. 81–87.CrossRefGoogle Scholar
  23. Jacobsen, S.B. and Wasserburg, G.J., Sm–Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.CrossRefGoogle Scholar
  24. Jahn, B.-M., Auvray, B., Blais, S., et al., Trace elements geochemistry and petrogenesis of Finnish greenstone belts, J. Petrol., 1980, vol. 21, pp. 201–244.CrossRefGoogle Scholar
  25. Jahn, B.-M., Gruau, G., and Glikson, A.Y., Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution, Contrib. Mineral. Petrol., 1982, vol. 80, pp. 25–40.CrossRefGoogle Scholar
  26. Keto, L.S. and Jacobsen, S.B., Nd and Sr isotopic variations of Early Paleozoic oceans, Earth Planet. Sci. Lett., 1987, vol. 84, pp. 27–41.CrossRefGoogle Scholar
  27. Kozhevnikov, V.N. Geologiya i geokhimiya severokarel’skikh zelenokamennykh struktur (Geology and Geochemistry of the North Karelian Greenstone Structures), Petrozavodsk: Kar. NTs RAN, 1992.Google Scholar
  28. Ludwig, K.R., A User’s Manual for Isoplot, 3.00: a geochronological toolkit for Microsoft Exel, Berkeley Geochronol. Center. Spec. Publ., 2000, no. 2.Google Scholar
  29. Maier, W.D., Peltonen, P., Halkoaho, T., and Hanski, E., Geochemistry of komatiites from the Tipasjärvi, Kuhmo, Suomussalmi, Ilomantsi and Tulppio greenstone belts, Finland: implications for tectonic setting and Ni sulphide prospectivity, Precambrian Res., 2013, vol. 228, pp. 63–84.CrossRefGoogle Scholar
  30. McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  31. Myskova T.A., Berezhnaya N.G., Glebovitskii V.A., et al., Findings of the oldest (3600 Ma) zircons in gneisses of the Kola Group, Central Kola Block, Baltic Shield: evidence from U–Pb (SHRIMP-II) data, Dokl. Earth Sci., 2005, vol. 402, pp. 547–550.Google Scholar
  32. Pujol, M., Bernard, M., Burgess, R., et al., Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics, Nature, 2013, vol. 498, pp. 87–90.CrossRefGoogle Scholar
  33. Ruzh’eva, M.S., Matrenichev, V.A., Vrevskii, A.B., et al., Kolmozero–Voron’e–Ura Guba greenstone belt, Putevoditel’ geologicheskikh ekskursii mezhdunarodnogo simpoziuma “Mantiinye plyumy i metallogeniya” (A Guidebook of Geological Excursions of the International Symposium “Mantle Plumes and Metallogeny”), Petrozavodsk-Apatity, 2002, pp. 63–76.Google Scholar
  34. Smolkin, V.F., Komatiitovyi i pikritovyi magmatizm rannego dokembriya Baltiiskogo shchita (Early Precambrian Komatiitic and Picritic Magmatism of the Baltic Shield), St. Petersburg: Nauka, 1992.Google Scholar
  35. V. F. Smolkin, V. V. Borisova, S. A. Svetov, and A. E. Borisov, Late Archean komatiites of the Ura Bay–Titovka Structure, northwestern Kola region, Petrology, 2000, vol. 8, no. 2, pp. 177–199.Google Scholar
  36. Sobolev, A.V., Asafov, E.V., Gurenko, A.A., et al., Komatiites reveal a hydrous Archaean deep-mantle reservoir, Nature, 2016, vol. 531, pp. 628–632.CrossRefGoogle Scholar
  37. Sossi, P.A., Eggins, S.M., Nesbitt, R.W., et al., Petrogenesis and geochemistry of Archean komatiites, J. Petrol., 2016, vol. 57, pp. 147–184.CrossRefGoogle Scholar
  38. Svetov, S.A. Komatiit—toleitovye assotsiatsii Vedlozersko- Segozerskogo zelenokamennogo poyasa Tsentral’noi Karelii (Komatiite–Tholeiitic Associations of the Vedlozero–Segozero Belt of Central Karelia), Petrozavodsk: Kar. NTs RAN, 1997.Google Scholar
  39. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Evolution and Composition, London: Blackwell, 1985.Google Scholar
  40. Van Hunen, J. and Moyen, J.-F., Archean subduction: fact or fiction?, Annu. Rev. Earth Planet. Sci., 2012, vol. 40, pp. 195–219.CrossRefGoogle Scholar
  41. Van Kranendonk, M.J., Smithies, R.Y., Hickman, A.H., et al., Paleoarchean development of a continental nucleus: the East Pilbara terrane of the Pilbara Craton, Western Australia, Earth’s Oldest Rocks, London: Elsevier, 2007, pp. 307–337.Google Scholar
  42. Viljoen, M. and Viljoen, R., Evidence for the existence of amobile extrusive peridotitic magma from the Komati formation of the Onverwacht Group, Upper Mantle Project: Geol. Soc. S. Afr. Spec. Publ., 1969, vol. 2, pp. 87–112.Google Scholar
  43. Vrevskii, A.B., Pecularities of the plume–lithosphere processes in the Neoarchean of the Kola–Norwegian province of the Fennoscandian Shield, evidence from the Ura Guba greenstone structure: II. Petrology and geodynamic nature of the komatiite–tholeiitic association, Petrologiya, 2018, vol. 26 (in press).Google Scholar
  44. Vrevskii, A.B., Age and sources of the anorthosites of the Neoarchean Kolmozero–Voron’ya greenstone belt (Fennoscandian Shield), Petrology, 2016, vol. 24, no. 6, pp. 527–542.CrossRefGoogle Scholar
  45. Vrevsky, A.B., Matrenichev, V.A., and Ruzheva, M.S., Petrology of komatiites from the Baltic Shield and isotope geochemical evolution of their mantle sources, Petrology, 2003, vol. 11, no. 6, pp. 532–561.Google Scholar
  46. Watson, E.B., Wark, D.A., and Thomas, J.B., Crystallization thermometers for zircon and rutile, Contrib. Mineral. Petrol., 2006, vol. 151, pp. 413–433.CrossRefGoogle Scholar
  47. White, W.M., Geochemistry, 1997. http://www.geo.cornell. edu /geology/classes/chapters.htm.Google Scholar
  48. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.CrossRefGoogle Scholar
  49. Williams, I.S., U-Th-Pb geochronology by ion microprobe, in Applications of Microanalytical Techniques to Understanding Mineralizing Processes, McKibben, M.A., Shanks, W.C. and Ridley, W.I., Ed., Rev. Econom. Geol., 1998, vol. 7, pp. 1–35.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Earth SciencesSt Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations