Petrology

, Volume 26, Issue 2, pp 181–211 | Cite as

Unique Clinkers and Paralavas from a New Nyalga Combustion Metamorphic Complex in Central Mongolia: Mineralogy, Geochemistry, and Genesis

  • I. S. Peretyazhko
  • E. A. Savina
  • E. A. Khromova
  • N. S. Karmanov
  • A. V. Ivanov
Article
  • 14 Downloads

Abstract

The paper presents mineralogical and geochemical data on clinkers and paralavas and on conditions under which they were formed at the Nyalga combustion metamorphic complex, which was recently discovered in Central Mongolia. Mineral and phase assemblages of the CM rocks do not have analogues in the world. The clinkers contain pyrogenically modified mudstone relics, acid silicate glass, partly molten quartz and feldspar grains, and newly formed indialite microlites (phenocrysts) with a ferroindialite marginal zone. In the paralava melts, spinel microlites with broadly varying Fe concentrations and anorthite–bytownite were the first to crystallize, and were followed by phenocrysts of Al-clinopyroxene ± melilite and Mg–Fe olivine. The next minerals to crystallize were Ca-fayalite, kirschsteinite, pyrrhotite, minerals of the rhönite–kuratite series, K–Ba feldspars (celsian, hyalophane, and Ba-orthoclase, Fe3+-hercynite ± (native iron, wüstite, Al-magnetite, and fresnoite), nepheline ± (kalsilite), and later calcite, siderite, barite, celestine, and gypsum. The paralavas contain rare minerals of the rhönite–kuratite series, a new end-member of the rhönite subgroup Ca4Fe 8 2+ Fe 4 3+ O4 [Si8Al4O36], a tobermorite-like mineral Ca5Si5(Al,Fe)(OH)O16 · 5H2O, and high- Ba F-rich mica (K,Ba)(Mg,Fe)3(Al,Si)4O10F2. The paralavas host quenched relics of microemulsions of immiscible residual silicate melts with broadly varying Si, Al, Fe, Ca, K, Ba, and Sr concentrations, sulfide and calcitic melts, and water-rich silicate–iron ± (Mn) fluid media. The clinkers were formed less than 2 Ma ago in various parts of the Choir–Nyalga basin by melting Early Cretaceous mudstones with bulk composition varies from dacitic to andesitic. The pyrogenic transformations of the mudstones were nearly isochemical, except only for volatile components. The CM melt rocks of basaltic andesitic composition were formed via melting carbonate–silicate sediments at temperatures above 1450°C. The Ca- and Fe-enriched and silicaundersaturated paralavas crystallized near the surface at temperatures higher than 900–1100°C and oxygen fugacity \(f_{O_2 }\) between the IW and QFM buffers. In local melting domains of the carbonate–silicate sedimentary rocks and in isolations of the residual melts among the paralava matrix the fluid pressure was higher than the atmospheric one. The bulk composition, mineral and phase assemblages of CM rocks of the Nyalga complex are very diverse (dacitic, andesitic, basaltic andesitic, basaltic, and silica-undersaturated mafic) because the melts crystallized under unequilibrated conditions and were derived by the complete or partial melting of clayey and carbonate–silicate sediments during natural coal fires.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balassone, G., Franco, E., Mattia, C.F., and Pulity, R., Indialite in xenolitic rocks from Somma–Vesuvius volcano (southern Italy): crystal chemistry and petrogenetic features, Am. Mineral., 2004, vol. 89, pp. 1–6.CrossRefGoogle Scholar
  2. Bentor, Y.K., Gross, S., and Heller, L., High-temperature minerals in non-metamorphosed sediments in Israel, Nature, 1963, vol. 199, pp. 478–479.CrossRefGoogle Scholar
  3. Bentor, Y.K., Kastner, M., Perlman, I., and Yellin, L., Combustion metamorphism of bituminous sediments and the formation of melts of granitic and sedimentary composition, Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 2229–2255.CrossRefGoogle Scholar
  4. Bentor, Y.K., Combustion metamorphic glasses, J. Non-Cryst. Solids, 1984, vol. 67, pp. 433–448.CrossRefGoogle Scholar
  5. Boivin, P., Données expérimentales préliminaires sur la stabilité de la rhönite à 1 atmosphère. Application aux gisements naturels, Bull. Mineral., 1980, vol. 103, pp. 491–502.Google Scholar
  6. Bratash, V.I., Report of party No. 26 on Prospecting Works in 1951 on a Scale 1: 200000 in the Eastern Part of the Nyalga Basin of the Central Aimak of Mongolia, Ulan-Bator, 1952, Ulan-Bator: Geological Fund,, Cadastre no. 1842.Google Scholar
  7. Bratash, V.I. and Novikova, L.A., Report on 1: 200000 geological survey in the Nyalga Basin, Ulan-Bator, 1952–1953, Ulan-Bator: Geological Fund, Cadastre No. 1309.Google Scholar
  8. Burg, A., Kolodny, Ye., and Lyakhovsky, V., Hatrurim- 2000: the “mottled” “zone” revisited, forty years later, Isr. J. Earth Sci., 1999, vol. 48, pp. 209–223.Google Scholar
  9. Chukanov, N.V., Aksenov, S.M., Pekov, I.V., et al., Ferroindialite (Fe2+,Mg)2Al4Si5O18—a new beryl group mineral from the Eifel volcanic area, Germany, Zap. Ross. Mineral. O-va, 2014, vol. 143, no. 1, pp. 46–56.Google Scholar
  10. Coal and Peat Fires: a Global Perspective. Volume 3. Case Studies and Coal Fires, Stracher, G.B., Prakash, A., and Sokol, E.V., Eds., Amsterdam: Elsevier, 2015.Google Scholar
  11. Cosca, M. and Peacor, D., Chemistry and structure of esseneite, (CaFe3+AlSiO6), a new pyroxene produced by pyrometamorphism, Am. Mineral., 1987, vol. 72, pp. 148–156.Google Scholar
  12. Cosca, M.A., Essene, E.J., Geissman, J.G., et al., Pyrometamorphic rocks associated with naturally burned coal beds, Powder River basin, Wyoming, Am. Mineral., 1989, vol. 74, pp. 85–100.Google Scholar
  13. Davidson, P.M. and Mukhopadhyay, D.K., Ca–Fe–Mg olivines: phase relations and a solution model, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 256–263.CrossRefGoogle Scholar
  14. Deer, W.A., Howie, R.A., and Zussman, J., An Introduction to the Rock-Forming Minerals, Essex–New York: Longman Scientific and Technical–Wiley, 1992.Google Scholar
  15. Durand, C., Baumgartner, L.P., and Marquer, D., Low melting temperature for calcite at 1000 bars on the join CaCO3-H2O—some geological implications, Terra Nova, 2015, vol. 27, pp. 364–369.CrossRefGoogle Scholar
  16. Erdenetsogt, B., Lee, I., Bat-Erdene, D., and Jargal, L., Mongolian coal-bearing basins: geological settings, coal characteristics, distribution, and resources, Int. J. Coal Geol., 2009, vol. 80, pp. 87–104.CrossRefGoogle Scholar
  17. Foit, F.F., Hooper, R.L., and Rosenberg, P.E., An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming, Am. Mineral., 1987, vol. 72, pp. 137–147.Google Scholar
  18. Genshaft, Yu.S. and Saltykovskii, A.Ya. Cenozoic volcanism of Mongolia, Ross. Zh. Nauk Zemle, 2000, vol. 2, no. 2, pp. 153–183.Google Scholar
  19. Genshaft, Yu.S., Klimenko, G.V., Saltykovskii, A.Ya., Ageeva, L.I., New data on composition and age of Cenozoic volcanic rocks of Mongolia, Dokl. Akad. Nauk SSSR, 1990, vol. 311, no. 2, pp. 420–424.Google Scholar
  20. Gittins, J. and Tuttle, O.F., The system CaF2-Ca(OH)2- CaCO3, Am. J. Sci., 1964, vol. 262, pp. 66–75.CrossRefGoogle Scholar
  21. Grapes, R., Pyrometamorphism, Berlin: Springer, 2011.Google Scholar
  22. Grapes, R. and Keller, J., Fe2+-dominant rhönite in undersaturated alkaline basaltic rocks, Kaiserstuhl volcanic complex, Upper Rhine graben, SWGermany, Eur. J. Mineral, 2010, vol. 22, pp. 285–292.CrossRefGoogle Scholar
  23. Grapes, R., Zhang, K., and Peng, Z., Paralava and clinker products of coal combustion, Yellow River, Shanxi Province, China, Lithos, 2009, vol. 113, pp. 831–843.CrossRefGoogle Scholar
  24. Grapes, R., Korzhova, S., Sokol, E., and Seryotkin, Y., Paragenesis of unusual Fe-cordierite (sekaninaite)-bearing paralava and clinker from the Kuznetsk coal basin, Siberia, Russia, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 253–273.CrossRefGoogle Scholar
  25. Grapes, R., Sokol, E., Kokh, S., et al., Petrogenesis of Narich paralava formed by methane flares associated with mud volcanism, Altyn-Emel national park, kazakhstan, Contrib. Mineral. Petrol., 2013, vol. 165, pp. 781–803.CrossRefGoogle Scholar
  26. Grew, E.S., Hålenius, U., Pasero, M., and Barbier, J., Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup), Mineral. Mag., 2008, vol. 72, pp. 39–876.CrossRefGoogle Scholar
  27. Haefeker, U., Kaindl, R., and Tropper, P., Semi-quantitative determination of the Fe/Mg ratio in synthetic cordierite using Raman spectroscopy, Am. Mineral., 2012, vol. 97, pp. 1662–1669.CrossRefGoogle Scholar
  28. Haggerty, S.E., Oxide mineralogy of the upper mantle, in Oxide Minerals: Petrologic and Magnetic Significance, Lindsley, D.H., Eds., Mineral. Soc. Amer. Rev. Mineral., 1991, vol. 25, pp. 355–416.Google Scholar
  29. He, Y.T. and Traina, S.J., Transformation of magnetite to goethite under alkaline Ph conditions, Clay Mineral., 2007, vol. 42, pp. 13–19.CrossRefGoogle Scholar
  30. Heffern, E.L., Reiners, P.W., Naeser, C.W., and Coates, D.A., Geochronology of clinker and implications for evolution of the Powder River basin landscape, Wyoming and Montana, Geol. Soc. Amer. Rev. Eng. Geol., 2007, pp. 155–175.Google Scholar
  31. Hess, J.C. and Lippolt, H.J., Compilation of K-Ar measurements on HD-B1 standard biotite–1994 status report, in Phanerozoic Time Scalel, Odin, G.S., Eds., Bul. Liasis. Inform. IUGS Subcom. Geochronol., 1994, vol. 12, pp. 19–23.Google Scholar
  32. Hwang, S-L., Shen, P., Chu, H-T., et al., Kuratite Ca4(Fe2+ 10Ti2)O4[Si8Al4O36], the Fe2+-analogue of rhönite, a new mineral from D’Orbigny angrite meteorite, Mineral. Mag., 2016, vol. 80, pp. 1067–1076.CrossRefGoogle Scholar
  33. Kalugin, I.A., Tret’yakov, G.A., and Bobrov, V.A., Iron ore basalts in the burnt rocks of East Kazakhstan, Tr. Inst. Geol. Geofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1991.Google Scholar
  34. Keller, J., Zaitsev, A.N., and Wiedenmann, D., Primary magmas at Oldoinyo Lengai: the role of olivine melilitites, Lithos, 2006, vol. 91, pp. 150–172.CrossRefGoogle Scholar
  35. Kunzmann, T., The aenigmatite–rhönite mineral group, Eur. J. Mineral., 1999, vol. 11, pp. 743–756.CrossRefGoogle Scholar
  36. Lavrent’ev, Yu.G., Karmanov, N.S., and Usova, L.V. Electron probe microanalysis of minerals: microprobe or scanning electron microscope? Russ. Geol. Geophys., 2015, vol. 56, no. 8, pp. 1154–1161.CrossRefGoogle Scholar
  37. Lee, J.-Y., Marti, K., Severinghaus, J.P., et al., A redetermination of the isotopic abundances of atmospheric Ar, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 4507–4512.CrossRefGoogle Scholar
  38. McDonough, W.E. and Sun, S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  39. Melluso, L., Conticelli, S., and Gennaro, R., Kirschsteinite in the Capo di Bove melilite leucitite lava (cecilite), Alban Hills, Italy, Mineral. Mag., 2010, vol. 74, pp. 887–902.CrossRefGoogle Scholar
  40. Mukhopadhyay, D.K. and Lindsley, D.H., Phase relations in the join kirschsteinite (CaFeSiO4)–fayalite (Fe2SiO4), Am. Mineral., 1983, vol. 68, pp. 1089–1094.Google Scholar
  41. Nigmatulina, E.N. and Nigmatulina, E.A., Pyrogenic iron ores of ancient coal fires of the Kuznetsk Basin, Zap. Ross. Mineral. O-va, 2009, no. 1, pp. 52–68.Google Scholar
  42. Novikov, I.S., Sokol, E.V., Travin, A.V., and Novikova, S.A., Signature of Cenozoic orogenic movements in combustion metamorphic rocks: mineralogy and geochronology (example of the Salair–Kuznetsk Basin transition), Russ. Geol. Geophys., 2008, vol. 49, no. 6, pp. 378–396.CrossRefGoogle Scholar
  43. Novikova, S., Sokol, E., and Khvorov, P., Multiple combustion metamorphic events in the Goose Lake coal basin, Transbaikalia, Russia: first dating results, Quat. Geochronol., 2016, vol. 36, pp. 38–54.CrossRefGoogle Scholar
  44. Peretyazhko, I.S., CRYSTAL–Applied software for mineralogists, petrologists, and geochemists, Zap. Ross. Mineral. O-va, 1996, no. 3, pp. 141–148.Google Scholar
  45. Peretyazhko, I.S. and Savina, E.A., Silicate–iron liquid immiscibility in rhyolitic magma, Dokl. Earth Sci., 2014, vol. 457, pp. 1028–1033.CrossRefGoogle Scholar
  46. Peretyazhko I.S., Savina E.A., Karmanov N.S., and Pavlova, L.A., Silicate–iron fluid media in rhyolitic magma: data on rhyolites from the Nilginskaya Depression, Central Mongolia, Petrology, 2014, vol. 22, no. 3, pp. 255–292.CrossRefGoogle Scholar
  47. Peretyazhko, I.S., Savina, E.A., and Khromova, E.A., Minerals of the rhönite–kuratite series in paralavas from a new combustion metamorphic complex of Choir–Nyalga basin (Central Mongolia): chemistry, mineral assemblages, and formation conditions, Mineral. Mag., 2017, vol. 81, pp. 949–974.CrossRefGoogle Scholar
  48. Platz, T., Foley, S.F., and André, L., Low-pressure fractionation of the Nyiragongo volcanic rocks, Virunga Province, D.R. Congo, J. Volcanol. Geotherm. Res., 2004, vol. 136, pp. 269–295.CrossRefGoogle Scholar
  49. Pokrovskii, P.V., Ammonium chloride from the Khamarin–Khural–Khid brown coal field in Mongolia, Zap. Ross. Mineral. O-va, 1949, no. 3, pp. 38–45.Google Scholar
  50. Richardson, I.G., Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: applicability to hardened pastes of tricalcium silicate, ß-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume, Cement Concrete Res., 2004, vol. 34, pp. 1733–1777.CrossRefGoogle Scholar
  51. Schreyer, W., Maresch, W.V., Daniels, P., and Wolfsdorff, P., Potassic cordierite: characteristic minerals for high-temperature, very low-pressure environments, Contrib. Mineral. Petrol., 1990, vol. 105, pp. 162–172.CrossRefGoogle Scholar
  52. Sharpenok, L.N., Kukharenko, E.A., and Kostin, A.E., New provisions for volcanogenic rocks in the petrographic code, J. Volcanol. Seismol., 2009, vol. 3, no. 4, pp. 279–293.CrossRefGoogle Scholar
  53. Sharygin, V.V., Sokol E.V., and Belakovskii, D.I., Fayalite–sekaninaite paralava from the Ravat coal fire (Central Tajikistan), Russ. Geol. Geophys., 2009, no. 8, pp. 695–713.Google Scholar
  54. Sokol, E.B., Maksimova, N.V., Nigmatulina, E.N., et al., Pirometamorfizm (Pyrometamorphism), Novosibirsk: SO RAN, 2005.Google Scholar
  55. Sokol, E.V., Novikova, S.A., Alekseev, D.V., and Travin, A.V., Natural coal fires in the Kuznetsk coal basin: geologic causes, climate, and age, Russ. Geol. Geophys., 2014, vol. 55, no. 9, pp. 1043–1064.CrossRefGoogle Scholar
  56. Sokol, E., Sharygin, V., Kalugin, V., et al., Fayalite and kirschsteinite solid solutions in melts from burned spoilheaps, South Urals, Russia, Eur. J. Mineral., 2002, vol. 14, pp. 795–807.Google Scholar
  57. Steiger, R.H. and Jäger, E., Subcommission on geochronology: convention on the use of decay constants in geoand cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, pp. 359–362.CrossRefGoogle Scholar
  58. Wyllie, P.J. and Tuttle, O.F., The system CaO–CO2-H2O and the origin of carbonatites, J. Petrol., 1960, vol. 1, pp. 1–46.CrossRefGoogle Scholar
  59. Žacek, V., Skála, R., Chlupácová, M., and Dvorak, Z., Ca- Fe3+-rich, Si-undersaturated buchite from Želénky, North- Bohemian brown coal basin, Czech Republic, Eur. J. Mineral., 2005, vol. 17, pp. 623–633.Google Scholar
  60. Žaček, V., Skála, R., and Zdeněk, D., Combustion metamorphism in the Most Basin, Coal and Peat Fires: A Global Perspective, Glenn, B., Prakash, A., and Sokol, E.V., Eds., New York: Elsevier, 2015, pp. 162–202.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. S. Peretyazhko
    • 1
  • E. A. Savina
    • 1
  • E. A. Khromova
    • 2
  • N. S. Karmanov
    • 3
  • A. V. Ivanov
    • 4
  1. 1.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Geological Institute, Siberian BranchRussian Academy of SciencesUlan-UdeRussia
  3. 3.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations