, Volume 25, Issue 6, pp 566–591 | Cite as

2.5 Ga gabbro-anorthosites in the Belomorian Province, Fennoscandian Shield: Petrology and tectonic setting

  • A. V. Stepanova
  • V. S. Stepanov
  • A. N. Larionov
  • P. Ya. Azimov
  • S. V. Egorova
  • Yu. O. Larionova


The Vorochistoozersky, Nizhnepopovsky, and Severo-Pezhostrovsky gabbro-anorthosite massifs have been studied in the central part of the Belomorian Province, Fennoscandian Shield. The similarity of geological setting and rock composition of these massifs suggests their affiliation to a single complex. The age of the gabbro-anorthosites was determined by U-Pb (SHRIMP II) zircon dating of gabbro-pegmatites from the Vorochistoozersky massif at 2505 ± 8 Ma. The studied massifs were overprinted by the high-pressure amphibolite facies metamorphism. Relicts of magmatic layering and primary magmatic assemblages preserved in the largest bodies. The massifs consist mainly of leucocratic gabbros but also contain rocks of the layered series varying in composition from olivinite to anorthosite. The presence of troctolites in the layered series indicates the stability of the olivine–plagioclase liquidus assemblage and, respectively, shallow depths of melt crystallization. Despite the composition differences between gabbro-anorthosites of the Belomorian and peridotite–gabbronorite intrusions Kola provinces, these simultaneously formed massifs presumably mark a single great igneous event. It also includes the gabbronorite dikes in the Vodlozero terrane of the Karelian province, the Mistassini swarm in the Superior province, and the Kaminak swarm in the Hearne Craton, Canadian Shield. The large igneous province of age ~2500 Ma reflects the oldest stage of within-plate magmatism after a consolidation of the Neoarchean crust of the Kenorland Supercontinent (Superia supercraton).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11495_2017_7320_MOESM1_ESM.pdf (1 mb)
Supplementary materials for Stepanova A.V., Stepanov V.S., Larionov A.N., Azimov P.Ya., Egorova S.V., Larionova Yu.O. The 2.5 Ga gabbro-anorthosites in the Belomorian province, Eastern Fennoscandian Shield: petrology and tectonic setting


  1. Alexejev, N., Belyatsky, B.V., Zinger, T.F., et al., Age of the crystallization and metamorphism of the Pezhostrov gabbro-anorthosites, northen Karelia, Russia, Abstracts of SVEKALAPKO 5-th Workshop. EUROPROBE Project, Lammi: Oulu University, 2000, p. 3.Google Scholar
  2. Amelin, Y.V. and Semenov, V.S., Nd and Sr isotopic geochemistry of mafic layered intrusions in the eastern Baltic Shield: implications for the evolution of Paleoproterozoic continental mafic magmas, Contrib. Mineral. Petrol., 1996, vol. 124, nos. 3-4, pp. 255–272.CrossRefGoogle Scholar
  3. Aspler, L.B. and Chiarenzelli, J.R., Two Neoarchean supercontinents? Evidence from the Paleoproterozoic, Sediment. Geol., 1998, vol. 120, pp. 75–104.CrossRefGoogle Scholar
  4. Bayanova, T., Mitrofanov, F., Serov, P., et al., Layered PGE Paleoproterozoic (LIP) intrusions in the N-E part of the Fennoscandian Shield—isotopic Nd-Sr and 3He/4He data, summarizing U-Pb ages (on baddeleyite and zircon), Sm-Nd data (on rock-forming and sulphide minerals), duration and mineralization, Geochronology—Methods and Case Studies, 2014, pp. 144–193.Google Scholar
  5. Berman, R.G., Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2, J. Petrol., 1988, vol. 29, no. 2, pp. 445–522.CrossRefGoogle Scholar
  6. Berman, R.G., Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications, Can. Mineral., 1991, vol. 29, no. 4, pp. 833–855.Google Scholar
  7. Bibikova E.V., Claesson, S., Glebovitsky, V.A., et al., Isotope dating of the Svecofennian metamorphism of the Belomorian Belt, Baltic Shield, Geochem. Int., 2001, vol. 39, pp. 1023–1026.Google Scholar
  8. Black, L.P., Kamo, S.L., Allen, C.M., et al., Temora 1: a new zircon standard for Phanerozoic U-Pb geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.CrossRefGoogle Scholar
  9. Bleeker, W., The late Archean record: a puzzle in ca. 35 pieces, Lithos, 2003, vol. 71, pp. 99–134.CrossRefGoogle Scholar
  10. Bleeker, W. and Ernst, R.R.E., Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking Earth’s paleogeographic record back to 2.6 Ga, Dyke Swarms—time markers of crustal evolution. Proceedings of the Fifth International Dyke Conference, 2006, pp. 3–26.CrossRefGoogle Scholar
  11. Bleeker, W., Hamilton, M.A., Ernst, R.E., et al., The search for Archean–Paleoproterozoic supercratons: new constraints on Superior–Karelia–Kola correlations within Supercraton Superia, including the first ca. 2504 Ma (Mistassini) ages from Karelia, Abstract for IGC33 Meeting, Oslo, 2008.Google Scholar
  12. Bogdanova, S.V., Gorbatschev, R., and Garetsky, R.G., EUROPE East European Craton, Reference Module in Earth Systems and Environmental Sciences, 2016.Google Scholar
  13. Cawthorn, R.G. and Ashwal, L.D., Origin of anorthosite and magnetitite layers in the Bushveld complex, constrained by major element compositions of plagioclase, J. Petrol., 2009, vol. 50, no. 9, pp. 1607–1637.CrossRefGoogle Scholar
  14. Chekulaev, V.P., Lobach-Zhuchenko S.B., and Levskii, L.K., Archean granites in Karelia as indicators of the composition and age of the local continental crust, Geochem. Int., 1997, vol. 35, no. 8, pp. 704–715.Google Scholar
  15. Daly, J.S., Balagansky, V.V., Timmerman, M.J., et al., The Lapland–Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere, Geol. Soc. London, Mem., 2006, vol. 32, pp. 579–598.CrossRefGoogle Scholar
  16. Danyushevsky, L.V. and Plechov, P., Petrolog3: integrated software for modeling crystallization processes, Geochem. Geophys., Geosyst., 2011, vol. 12, no. 7, pp. 1–12.CrossRefGoogle Scholar
  17. DePaolo, D.J., Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation, Earth Planet. Sci. Lett., 1981, vol. 53, pp. 189–202.CrossRefGoogle Scholar
  18. Ernst, R.E. and Buchan, K.L., Geochemical database of Proterozoic intraplate mafic magmatism in Canada, Geol. Surv. Canada. Open File, 2010, vol. 6016, p. 14.Google Scholar
  19. Fedotov, Zh.A., Serov, P.A., and Elizarov, D.V., Tholeiites from the depleted subcontinental mantle in the root zone of the Monchegorskii Pluton, Baltic Shield, Dokl. Earth Sci., 2009, vol. 429A, pp. 1462–1466.CrossRefGoogle Scholar
  20. Ghiorso, M.S. and Sack, R.O., Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures, Contrib. Mineral. Petrol., 1995, vol. 119, pp. 197–212.CrossRefGoogle Scholar
  21. Groshev, N.Yu. Fedorova-Tundra massif of the Fedorova- Pana platinum-bearing layered complex (Kola Peninsula)— new petrochemical and geochemical data, Vestn. KNTs RAN, 2011, no. 1, pp. 17–29.Google Scholar
  22. Hölttä, P., Balagansky, V., Garde, A.A., et al., Archean of Greenland and Fennoscandia, Episodes, 2008, vol. 1, pp. 13–19.Google Scholar
  23. Larionov, A.N., Andreichev, V.A., and Gee, D.G., The Vendian alkaline igneous suite of northern Timan: ion microprobe U-Pb zircon ages of gabbros and syenite, Geol. Soc. London, Mem., 2004, vol. 30, pp. 69–74.CrossRefGoogle Scholar
  24. Larionova, Yu.O., Samsonov, A.V., and Shatagin, K.N., Sources of Archean sanukitoids (high-Mg subalkaline granitoids) in the Karelian Craton: Sm-Nd and Rb-Sr isotopicgeochemical evidence, Petrology, 2007, vol. 15, no. 6, pp. 530–550.CrossRefGoogle Scholar
  25. Lubnina, N.V. and Slabunov, A.I., Reconstruction of the Kenorland supercontinent in the Neoarchean based on paleomagnetic and geological data, Mosc. Univ. Geol. Bull., 2011, vol. 66, pp. 242–249.CrossRefGoogle Scholar
  26. Ludwig, K.R., User’s manual for ISOPLOT/Ex, 3.22. A geochronological toolkit for Microsoft Excel, Berkley Geochronol. Cent., sp. Publ., 2005a.Google Scholar
  27. Ludwig, K.R., SQUID 1.12. A User’s Manual. A geochronological toolkit for Microsoft Excel, Berkley Geochronol. Center, Sp. Publ., 2005a.Google Scholar
  28. Maurice, C., David, J., O’Neil, J., and Francis, D., Age and tectonic implications of Paleoproterozoic mafic dyke swarms for the origin of 2.2 Ga enriched lithosphere beneath the Ungava Peninsula, Canada, Precambrian Res., 2009, vol. 174, pp. 163–180.CrossRefGoogle Scholar
  29. McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  30. Mertanen, S., Vuollo, I.J., Huhma, H., et al., Early Paleoproterozoic–Archean dykes and gneisses in Russian Karelia of the Fennoscandian Shield–-new paleomagnetic, isotope age and geochemical investigations, Precambrian Res., 2006, vol. 144, pp. 239–260.CrossRefGoogle Scholar
  31. Mitrofanov, F.P., Bayanova, T.B., Korchagin, A.U., et al., East Scandinavian and Noril’sk plume mafic large igneous provinces of Pd–Pt ores: geological and metallogenic comparison, Geol. Ore Deposits, 2013, vol. 55, no. 5, pp. 305–319.CrossRefGoogle Scholar
  32. Morse, S.A., Brady, J.B., and Sporleder, B.A., Experimental petrology of the Kiglapait intrusion: cotectic trace for the lower zone at 5 kbar in graphite, J. Petrol., 2004, vol. 45, pp. 2225–2259.CrossRefGoogle Scholar
  33. Morse, S.A., Kiglapait intrusion, Labrador, in Layered Intrusions, Charlier B., Namur, O., Latypov, R., and Tegner, C., Eds., Layered Intrusions, Springer Geology, 2015, pp. 589–648.CrossRefGoogle Scholar
  34. Presnall, D.C., Dixon, S.A., Dixon, J.R., et al., Liquidus phase relations on the join diopside–forsterite–anorthite from 1 atm to 20 kbar: their bearing on the generation and crystallization of basaltic magma, Contrib. Mineral. Petrol., 1978, vol. 66, pp. 203–220.CrossRefGoogle Scholar
  35. Puchtel, I.S., Touboul, M., Blichert-Toft, J., et al., Lithophile and siderophile element systematics of Earth’s mantle at the Archean–Proterozoic boundary: evidence from 2.4 Ga komatiites, Geochim. Cosmochim. Acta, 2016, vol. 180, pp. 227–255.CrossRefGoogle Scholar
  36. Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), Glebovitskii, V.A., St. Petersburg: Nauka, 2005.Google Scholar
  37. Rassloennye intruzii Monchegorskogo rudnogo raiona (Layered Intrusions of the Monchegorsk Ore District), Mitrofanov, F.P., Smol’kin, V.F., Eds., Apatity: KNTs RAN, 2004, Vol. 1.Google Scholar
  38. Sandeman, H.A., Heaman, L.M., and LeCheminant, A.N., The Paleoproterozoic Kaminak dykes, Hearne Craton, western Churchill province, Nunavut, Canada: preliminary constraints on their age and petrogenesis, Precambrian Res., 2013, vol. 232, pp. 119–139.CrossRefGoogle Scholar
  39. Scoates, J.S., The plagioclase-magma density paradox reexamined and the crystallization of Proterozoic anorthosites, J. Petrol., 2000, vol. 41, pp. 627–649.CrossRefGoogle Scholar
  40. Sergeev, S.A., Lobach-Zhuchenko, S.B., and Arestova, N.A., Problem of the isotope dating of mafic rocks, Dokl. Earth Sci., 1999, vol. 365A, pp. 354–357.Google Scholar
  41. Sharkov, E.V., Lyakhovich, V.V., and Ledneva, G.V., Petrology of the Paleoproterozoic Belomorian drusite complex, Pezhostrov Island, northern Karelia, Petrologiya, 1994, vol. 2, no. 5, pp. 511–531.Google Scholar
  42. Sharkov, E.V., Smol’kin, V.F., and Krassivskaya, I.S., Early Proterozoic igneous province of siliceous high-Mg boninite-like rocks in the eastern Baltic Shield, Petrology, 1997, vol. 5, no. 5, pp. 448–465.Google Scholar
  43. Sharkov, E.V., Bogatikov, O.A., and Krasivskaya, I.S., The role of mantle plumes in the Early Precambrian tectonics of the Eastern Baltic Shield, Geotectonics, 2000, vol. 34, no. 2, pp. 85–105.Google Scholar
  44. Sharkov, E.V., Krassivskaya, I.S., and Chistyakov, A.V., Dispersed mafic–ultramafic intrusive magmatism in Early Paleoproterozoic mobile zones of the Baltic Shield: an example of the Belomorian drusite (coronite) complex, Petrology, 2004, vol. 12, no. 6, pp. 632–655.Google Scholar
  45. Shurkin, K.A., Gorelov, N.V., Sal’e, M.E., et al., Belomorskii kompleks Severnoi Karelii i yugo-zapada Kol’skogo poluostrova (Belomorian Complex of Northern Karelia and Southwestern Kola Peninsula), Moscow–Leningrad: AN SSSR, 1962.Google Scholar
  46. Shurkin, K.A. and Levkovsky, R.Z., On the age of the Belomorian gabbrolabradorite intrusions, in Voprosy geologii i zakonomernosti razmeshcheniya poleznykh iskopaemykh Karelii (Geological Problems and Regularities in the Distribution of Mineral Resources of Karelia), 1966, pp. 267–289.Google Scholar
  47. Skublov, S.G., Berezin, A.V., Mel’nik, A.E., et al., Protolith age of eclogites from the southern part of Pezhostrov Island, Belomorian Belt: protolith of metabasites as indicator of eclogitization time, Petrology, 2016, vol. 24, no. 6, pp. 594–607.CrossRefGoogle Scholar
  48. Slabunov, A.I., Geologiya i geodinamika dokembriiskikh podvizhnykh poyasov (na primere Belomorskoi provintsii Fennoskandinavskogo shchita) (Geology and Geodynamics of the Precambrian Mobile Belts: Evidence from the Belomorian province of the Scandinavian Shield), Petrozavodsk: KarNTs RAN, 2008. 296 c.Google Scholar
  49. Smith, P.M. and Asimow, P.D., Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models, Geochem. Geophys, 2005, vol. 6, p. Q02004.Google Scholar
  50. Stacey, J.S. and Kramers, J.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, pp. 207–221.CrossRefGoogle Scholar
  51. Steiger, R.H. and Jäger, E., Subcommission on geochronology: convention on the use of decay constants in geoand cosmochronology, Earth Planet. Sci. Lett., 1977, vol. 36, pp. 359–362.CrossRefGoogle Scholar
  52. Stepanov, V.S., Osnovnoi magmatizm dokembriya zapadnogo Belomor’ya (Precambrian Mafic Magmatism of the Western Belomorian Province), Leningrad: Nauka, 1981.Google Scholar
  53. Stepanov, V.S. and Slabunov, A.I., Amfibolity i rannie bazitul’trabazity dokembriya Severnoi Karelii (Precambrian Amphibolites and Early Mafic–Ultramafic Rocks of Northern Karelia), Leningrad: Nauka, 1989.Google Scholar
  54. Stepanova, A. and Stepanov, V., Paleoproterozoic mafic dyke swarms of the Belomorian Province, eastern Fennoscandian shield, Precambrian Res., 2010, vol. 183, pp. 602–616.CrossRefGoogle Scholar
  55. Svetov, S.A., Stepanova, A.V., Chazhengina, S.Yu., et al., Precision (ICP-MS, LA-ICP-MS) analysis of chemical composition of rocks and minerals: technique and assessment of result accuracy by the example of the Early Precambrian mafic complexes, Tr. KarNTs Ross. Akad. Nauk, 2015, vo. 7, pp. 173–192.Google Scholar
  56. Systra, Yu.I., Strukturnaya evolyutsiya belomorid Zapadnogo Belomor’ya (Structural Evolution of Belomorides of the Western Belomorian Province) Leningrad: Nauka, 1978.Google Scholar
  57. Timmerman, M.J. and Daly, J.S., Sm-Nd evidence for Late Archean crust formation in the Lapland–Kola mobile belt, Kola Peninsula, Russia and Norway, Precambrian Res., 1995, vol. 72, pp. 97–107.CrossRefGoogle Scholar
  58. Wiedenbeck, M., Alle, P., Corfu, F., et al., Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses, Geostand. Newslett., 1995, vol. 19, pp. 1–23.CrossRefGoogle Scholar
  59. Williams, H., Hoffman, P.F., Lewry, J.F., et al., Anatomy of North America: thematic geologic portrayals of the continents, Tectonophysics, 1991, vol. 187, pp. 117–134.CrossRefGoogle Scholar
  60. Williams, I.S., U-Th-Pb geochronology by ion microprobe, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Stepanova
    • 1
    • 2
  • V. S. Stepanov
    • 1
  • A. N. Larionov
    • 3
  • P. Ya. Azimov
    • 4
  • S. V. Egorova
    • 1
    • 2
  • Yu. O. Larionova
    • 2
  1. 1.Institute of Geology, Karelian Research CentreRussian Academy of SciencesPetrozavodskRussia
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)Russian Academy of SciencesMoscowRussia
  3. 3.Center of Isotopic ResearchKarpinsky Russian Geological Research InstituteSt. PetersburgRussia
  4. 4.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations