, Volume 25, Issue 6, pp 535–565 | Cite as

Petrographic-geochemical types of Triassic alkaline ultramafic rocks in the Northern Anabar province, Yakutia, Russia

  • A. V. Kargin
  • Yu. Yu. Golubeva
  • E. I. Demonterova
  • E. V. Koval’chuk


A classification suggested for alkaline ultramafic rocks of the Ary-Mastakh and Staraya Rechka fields, Northern Anabar Shield, is based on the modal mineralogical composition of the rocks and the chemical compositions of their rock-forming and accessory minerals. Within the framework of this classification, the rocks are indentified as orangeite and alkaline ultramafic lamprophyres: aillikite and damtjernite. To estimate how much contamination with the host rocks has modified their composition when the diatremes were formed, the pyroclastic rocks were studied that abound in xenogenic material (which is rich in SiO2, Al2O3, K2O, Rb, Pb, and occasionally also Ba) at relatively low (La/Yb)PM, (La/Sm)PM, and not as much also (Sm/Zr)PM and (La/Nb)PM ratios. The isotopic composition of the rocks suggests that the very first melt portions were of asthenospheric nature. The distribution of trace elements and REE indicates that one of the leading factors that controlled the diversity of the mineralogical composition of the rocks and the broad variations in their isotopic–geochemical and geochemical characteristics was asthenosphere–lithosphere interaction when the melts of the alkaline ultramafic rocks were derived. The melting processes involved metasomatic vein-hosted assemblages of carbonate and potassic hydrous composition (of the MARID type). The alkaline ultramafic rocks whose geochemistry reflects the contributions of enriched vein assemblages to the lithospheric source material, occur in the northern Anabar Shield closer to the boundary between the Khapchan and Daldyn terranes. The evolution of the aillikite melts during their ascent through the lithospheric mantle could give rise to damtjernite generation and was associated with the separation of a C–H–O fluid phase. Our data allowed us to distinguish the evolutionary episodes of the magma-generating zone during the origin of the Triassic alkaline ultramafic rocks in the northern Anabar Shield.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11495_2017_7319_MOESM1_ESM.pdf (224 kb)
Supplementary data 1 Kargin et al. Petrography and geochemistry of Triassic alkaline-ultramafic rocks of Northern Anabar, Siberian craton, Russia
11495_2017_7319_MOESM2_ESM.pdf (197 kb)
Table 2. Representative monticellite compositions (EMPA) from ultramafic-alkaline rocks from the Anabar region.


  1. Agashev, A.M., Orikhashi Yu., Watanabe, T., et al., Isotope- geochemical characteristics of kimberlites of the Siberian Platform in relation with problem of their origin, Geol. Geofiz., 2000, vol. 41, no. 1, pp. 90–99.Google Scholar
  2. Ashchepkov, I.V., Pokhilenko, N.P., Vladykin, N.V., et al., Tectonophysics structure and evolution of the lithospheric mantle beneath Siberian Craton, thermobarometric study, Tectonophysics, 2010, vol. 485, nos. 1–4, pp. 17–41.CrossRefGoogle Scholar
  3. Ashchepkov, I.V., Vladykin, N.N., Ntaflos, T., et al., Layering of the lithospheric mantle beneath the Siberian Craton: modeling using thermobarometry of mantle xenolith and xenocrysts, Tectonophysics, 2014, vol. 634, pp. 55–75.CrossRefGoogle Scholar
  4. Ashchepkov, I.V., Kuligin, S.S., Vladykin, N.V., et al., Comparison of mantle lithosphere beneath Early Triassic kimberlite fields in Siberian Craton reconstructed from deep-seated xenocrysts, Geosci. Front., 2015, doi 10.1016/j.gsf.2015.06.004Google Scholar
  5. Atlas-opredelitel’ porod i rud mestorozhdenii almazov kimberlitovogo tipa (Identificatiom Atlas of Rocks and Ores of the Kimberlite Type Diamonds), Moscow: Nedra, 1994.Google Scholar
  6. Babushkina, S.A., Altukhova, Z.A., and Zaitsev, A.I. Chemical and isotope composition of rocks of the Zapretnaya pipe, Orto-Yarginskoe field, Yakutian diamond province, Rudy Met., 2012, vol. 5, pp. 63–67.Google Scholar
  7. Becker, M. and Le Roex, A.P., Geochemistry of South African on- and off-craton, group I and group II kimberlites: petrogenesis and source region evolution, J. Petrol., 2006, vol. 47, no. 4, pp. 673–703.CrossRefGoogle Scholar
  8. Bogatikov O.A., Kononova V.A., Golubeva, Yu.Yu., et al., Variations in chemical and isotopic compositions of the Yakutian kimberlites and their causes, Geochem. Int., 2004, vol. 42, no. 9, pp. 799–821.Google Scholar
  9. Burgess, S.R. and Harte, B., Tracing lithosphere evolution through the analysis of heterogeneous G9–G10 garnets in peridotite xenoliths, II: REE chemistry, J. Petrol., 2004, vol. 45, no. 3, pp. 609–633.CrossRefGoogle Scholar
  10. Carlson, R.W., Czamanske, G., Fedorenko, V., et al., A comparison of Siberian meimechites and kimberlites: implications for the source of high-Mg alkalic magmas and flood basalts, Geochem., Geophys., Geosyst., 2006, vol. 7, no. 11. doi 10.1029/2006GC001342Google Scholar
  11. Chakhmouradian, A.R., Reguir, E.P., Kamenetsky, V.S., et al., Trace-element partitioning in perovskite: implications for the geochemistry of kimberlites and other mantlederived undersaturated rocks, Chem. Geol., 2013, vol. 353, pp. 112–131.CrossRefGoogle Scholar
  12. Chalapathi Rao N.V., Kamde, G., Kale, H.S., et al., Petrogenesis of the Mesoproterozoic lamproites from the Krishna Valley, eastern Dharwar Craton, southern India, Precambrian Res., 2010, vol. 177, pp. 103–130.CrossRefGoogle Scholar
  13. Chalapathi Rao, N.V., Lehmann, B., Mainkar, D., et al., Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: implication for mantle plume-lithosphere interaction in the Bastar craton, Central India, Contrib. Mineral. Petrol., 2011, vol. 161, no. 5, pp. 721–742.CrossRefGoogle Scholar
  14. Chernysheva, E.A. and Kostrovitskii, S.I., Olivine melilitites of the kimberlite and carbonatite associations in dikes and diatremes of eastern Siberia, Geochem. Int., 1998, vol. 36, no. 12, pp. 1100–1108.Google Scholar
  15. Coe, N., Le Roex, A.P., Gurney, J.J., et al. Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry, Contrib. Mineral. Petrol., 2008, vol. 156, no. 5, pp. 627–652.CrossRefGoogle Scholar
  16. Dasgupta, R., Hirschmann, M.M., McDonough, W.F., et al., Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa, Chem. Geol., 2009, vol. 262, pp. 57–77.CrossRefGoogle Scholar
  17. Foley, S., Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas, Lithos, 1992, vol. 28, nos. 3–6, pp. 435–453.CrossRefGoogle Scholar
  18. Foley, S.F., Musselwhite, D.S., and van der Laan, S.R., Melt compositions from ultramafic vein assemblages in the lithospheric mantle: a comparison of cratonic and non-cratonic settings, Proceedings of the VII-th International Kimberlite Conference, 1998, pp. 238–246.Google Scholar
  19. Fraser, K.J., Hawkesworth, C.J., Erlank, A.J., et al., Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites, Earth Planet. Sci. Lett., 1985, vol. 76, pp. 57–70.CrossRefGoogle Scholar
  20. Girnis, A.V., Bulatov, V.K., Brey, G.P., et al., Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12 GPa and applications to mantle metasomatism and kimberlite genesis, Lithos, 2013, vol. 160–161, pp. 183–200.CrossRefGoogle Scholar
  21. Giuliani, A., Phillips, D., Woodhead, J.D., et al., Did diamond- bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?, Nat. Commun, 2015, vol. 6, No. 6837.Google Scholar
  22. Giuliani, A., Phillips, D., Kamenetsky, V.S., et al., Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths, Lithos, 2016, vol. 240–243, pp. 189–201.CrossRefGoogle Scholar
  23. Golubeva, Yu.Yu., Pervov, V.A., and Kononova, V.A., Petrogenesis of autoliths from kimberlitic breccias in the V. Grib Pipe (Arkhangelsk District), Dokl. Earth Sci., 2006, vol. 411, no. 8, pp. 1257–1262.CrossRefGoogle Scholar
  24. Golubkova, A., Experimental and Thermodynamic Modelling of Sediment-Melt Related Metasomatism in Mantle Wedges and Mantle Keels under Oxidizing and Strongly Reducing Conditions: PhD dissertation, ETH Zurich, 2014.Google Scholar
  25. Grakhanov, S.A. and Smelov, A.P., Age of Predicted bedrock sources of diamonds in northern Yakutia, Otechestvennaya Geol., 2011, vol. 5, pp. 56–63.Google Scholar
  26. Grakhanov, S.A., Smelov, A.P., Egorov, K.N., et al., Sedimentary–volcanogenic nature of the basement of the Carnian age–source of diamonds in northeastern Siberian Platform, Otechestvennaya Geol., 2010, vol. 5, nos. 3-1-2.Google Scholar
  27. Grassi, D., Melting of Subducted Carbonated Pelites from 5 to 23 GPa: Alkali-Carbonatites, Mantle Metasomatism, and Element Recycling, PhD Dissertation, ETH Zurich, 2010.Google Scholar
  28. Gregoire, M., Bell, D., and Le Roex, A., Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited, Contrib. Mineral. Petrol., 2002, vol. 142, no. 5, pp. 603–625.CrossRefGoogle Scholar
  29. Gudfinnsson, G.H. and Presnall, D.C., Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa, J. Petrol., 2005, vol. 46, no. 8, pp. 1645–1659.CrossRefGoogle Scholar
  30. Ilupin, I.P., Vaganov, V.I., and Prokopchuk, B.I., Kimberlity: Spravochnik (Kimberlites: A Reference Book), Moscow: Nedra, 1990.Google Scholar
  31. Kamenetsky, V.S. and Yaxley, G.M., Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent, Geochim. Cosmochim. Acta, 2015, vol. 158, pp. 48–56.CrossRefGoogle Scholar
  32. Kargin, A.V., Geochemistry of mantle metasomatism related to formation of kimberlites in the northern East European Platform, Geol. Ore Deposits, 2014, vol. 56, no. 6, pp. 409–430.CrossRefGoogle Scholar
  33. Kargin, A.V., Golubeva, Yu.Yu., and Kononova, V.A., Kimberlites of the Daldyn–Alakit Region (Yakutia): Spatial Distribution of the Rocks with Different Chemical Characteristics, Petrology, 2011, vol. 19, no. 5, pp. 496–520.CrossRefGoogle Scholar
  34. Kargin, A.V., Nosova, A.A., Larionova, Yu.O., et al., Mesoproterozoic orangeites (kimberlites II) of West Karelia: mineralogy, geochemistry, and Sr–Nd isotope composition, Petrology, 2014, vol. 22, no. 2, pp. 151–183.CrossRefGoogle Scholar
  35. Kargin, A.V., Nosova, A.A., Postnikov, A.V., et al., Devonian ultramafic lamprophyre in the Irkineeva–Chadobets trough in the southwest of the Siberian Platform: age, composition, and implications for diamond potential prediction, Geol. Ore Deposits, 2016, vol. 58, no. 5, pp. 383–403.CrossRefGoogle Scholar
  36. Kononova, V.A., Golubeva, Yu.Yu., Bogatikov, O.A., et al., Geochemical diversity of Yakutian kimberlites: origin and diamond potential (ICP-MS Data and Sr, Nd, and Pb isotopy), Petrology, 2005, vol. 13, no. 3, pp. 205–228.Google Scholar
  37. Kononova, V.A., Golubeva, Yu.Yu., Bogatikov, O.A., et al., Diamond resource potential of kimberlites from the Zimny Bereg Field, Arkhangel’sk Oblast, Geol. Ore Deposits, 2007, vol. 49, no. 6, pp. 421–441.CrossRefGoogle Scholar
  38. Kornilova, V.P., Nikishov, K.N., Koval’skii, V.V., et al., Atlas tekstur i struktur kimberlitovykh porod (Atlas of Kimberlite Textures), Moscow: Nauka, 1983.Google Scholar
  39. Kostrovitsky, S.I., Morikiyo, T., Serov, I.V., et al., Isotopegeochemical systematics of kimberlites and related rocks from the Siberian craton, Russ. Geol. Geophys., 2007, vol. 48, no. 3, pp. 272–290.CrossRefGoogle Scholar
  40. Kostrovitsky, S.I., Skuzovatov, S.Y., Yakovlev, D.A., et al., Age of the Siberian Craton crust beneath the northern kimberlite fields: insights to the craton evolution, Gondwana Res., 2016, doi 10.1016/ Scholar
  41. Koval’skii, V.V., Nikishov, K.N., and Egorov, O.S., Kimberlitovye i karbonatitovye obrazovaniya vostochnogo i yugovostochnogo sklonov Anabarskoi anteklizy (Kimberlite and Varbonatite Complexes of the Eastern and Southeastern Slopes of the Anabar Anteclise), Moscow: Nauka, 1969.Google Scholar
  42. Lapin, A.V., On kimberlites of the Chadobets Uplift in relation with problem of formation–metallgenic analysis of the platform alkaline ultrabasic magmatites, Otechestvennaya Geol., 2001, no. 4, pp. 30–35.Google Scholar
  43. Lapin, A.V., Tolstov, A.V., and Antonov, A.V., Sr and Nd isotopic compositions of kimberlites and associated rocks of the Siberian Craton, Dokl. Earth Sci., 2007, vol. 414, pp. 557–560.CrossRefGoogle Scholar
  44. Larionova, Yu.O., Sazonova, L.V., Lebedeva, N.M., et al., Kimberlite age in the Arkhangelsk Province, Russia: isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite, Petrology, 2016, vol. 24, pp. 562–593.CrossRefGoogle Scholar
  45. Le Maitre, R.W., Streckeisen, A., Zanettin, B., et al., Igneous Rocks: a Classification and Glossary of Terms: Recommendations, Cambridge: Cambridge University Press, 2002.CrossRefGoogle Scholar
  46. Le Roex, A.P., Bell, D.R., and Davis, P., Petrogenesis of group i kimberlites from kimberley, south africa: evidence from bulk-rock geochemistry, J. Petrol., 2003, vol. 44, pp. 2261–2286.CrossRefGoogle Scholar
  47. Martin, L.H.J., Schmidt, M.W., Mattsson, H.B., et al., Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa, J. Petrol., 2013, vol. 54, no. 11, pp. 2301–2338.CrossRefGoogle Scholar
  48. McDonough, W.F. and Sun, S.S., The composition of the earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  49. Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry, and Petrology, Boston: Springer, 1986.CrossRefGoogle Scholar
  50. Mitchell, R.H., Kimberlites, Orangeites and Related Rocks, New York: Plenium Press, 1995.CrossRefGoogle Scholar
  51. Nelson, D.R., Isotopic characteristics and petrogenesis of the lamproites and kimberlites of central West Greenland, Lithos, 1989, vol. 22, pp. 265–274.CrossRefGoogle Scholar
  52. Nowell, G.M., Pearson, D.G., Bell, D.R., et al., Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions, J. Petrol., 2004, vol. 45, pp. 1583–1612.CrossRefGoogle Scholar
  53. O’Brien, H. and Tyni, M., Mineralogy and geochemistry of kimberlites and related rocks from Finland, Extended Abstracts of the 7th International Kimberlite Conference, Geol Surv. Finland, 1999, pp. 625–636.Google Scholar
  54. Parsadanyan, K.S., Kononova, V.A., and Bogatikov, O.A., Sources of Heterogeneous Magmatism of the Arkhangelsk Diamondiferous Province, Petrology, 1996, vol. 4, no. 5, pp. 460–479.Google Scholar
  55. Pervov, V.A., Larchenko, V.A., Stepanov, V.P., et al., Kimberlite sills along the Mela River (Arkhangel’sk diamond province): new data on age, and rock and mineral composition, Geologiya almaza: proshloe, nastoyashchee i budushchee (Geology of Diamond: Past, Present, and Future), Voronezh: VGU, 2005, pp. 558–570.Google Scholar
  56. Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya. Izdanie tret’e, ispravlennoe i dopolnennoe (Petrographic Code. Magmatic, Metamorphic, Metasomatic, and Impact Rocks. 3rd Ed.), Sankt-Petersburg: VSEGEI, 2009.Google Scholar
  57. Pin, C. and Zalduegui, J.F.S., Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks, Anal. Chim. Acta, 1997, vol. 339, pp. 79–89.CrossRefGoogle Scholar
  58. Pokhilenko, N.P., Agashev, A.M., Litasov, K.D., et al., Carbonatite metasomatism of peridotite lithospheric mantle: implications for diamond formation and carbonatite–kimberlite magmatism, Russ. Geol. Geophys., 2015, vol. 56, no 1, pp. 280–295.CrossRefGoogle Scholar
  59. Prelevic, D., Foley, S.F., Romer, R.L., et al., Tertiary ultrapotassic volcanism in serbia: constraints on petrogenesis and mantle source characteristics, J. Petrol., 2005, vol. 46, no. 7, pp. 1443–1487.CrossRefGoogle Scholar
  60. Prelevic, D., Foley, S.F., Romer, R., et al., Mediterranean tertiary lamproites derived from multiple source components in postcollisional geodynamics, Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 2125–2156.CrossRefGoogle Scholar
  61. Ringwood, A.E., Kesson, S.E., Hibberson, W., et al., Origin of kimberlites and related magmas, Earth Planet. Sci. Lett., 1992, vol. 113, no. 4, pp. 521–538.CrossRefGoogle Scholar
  62. Romu, K.R.I., Luttinen, A.V., and O’Brien, H.E., Lamproite- orangeite transition in 159 Ma dykes of Dronning Maud Land, Antarctica?, Extended Abstract of 9th International Kimberlite Conference, Frankfurt: 2008, No. 9IKC-A-00362.Google Scholar
  63. Rosen, O. M. Levsky, L. K. Zhuravlev, D. Z. et al., The Anabar collision system as an element of the Columbia Supercontinent: 600 Ma of compression (2.0–1.3 Ga), Dokl. Earth Sci. 2007, vol. 417, pp. 1355–1358.CrossRefGoogle Scholar
  64. Rosen, O.M., Serenko, V.P., and Spetsius, Z.V., Tectonics of the Yakutiankimberlite province: composition of crust and lithospheric mantle and problems of evolution, Problems of Predicton, Prospecting, and Study of Mineral Deposits at the Turning of 21th Century, Voronezh: Voronezhsk. Gos. Univ., 2003, pp. 332–338.Google Scholar
  65. Samsonov, A.V., Tretyachenko, V.V., Nosova, A.A., et al., Sutures in the Early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the northern East European Platform, Abstracts of 10-th Int. Kimberlite Conf., 2012, p. 10IKC35.Google Scholar
  66. Scott Smitt, B.H., Nowicki, T.E., Russel, J.K., et al., Kimberlite terminology and classification, in Proceedings of 10th International Kimberlite Conference, Pearson. D.G., Grutter, H.S., Harris, J.W., et al., Eds., New Delhi: Springer, 2013, pp. 1–17.Google Scholar
  67. Smelov A.P., Biller A.Ya., and Zaitsev A.I., Relations of different crystallomorphological types of diamonds in the Carbian tuffites of the northeastern Yakutian kimberlite province, Otechestvennaya Geol., 2011, vol. 5, pp. 50–55.Google Scholar
  68. Smelov, A.P. and Timofeev, V.F., The age of the North Asian cratonic basement: an overview, Gondwana Res., 2007, vol. 12, pp. 279–288.CrossRefGoogle Scholar
  69. Solov’eva, L.V., Lavrent’ev, Yu.G., Egorov, K.N., et al., The genetic relationship of the deformed peridotites and garnet megacrysts from kimberlites with asthenospheric melts, Russ. Geol. Geophys., 2008, vol. 49, no. 4, pp. 207–224.CrossRefGoogle Scholar
  70. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. London, Spec. Publ., 1989, vol. 42, no. 1, pp. 313–345.CrossRefGoogle Scholar
  71. Sun, J., Liu, C.Z., Tappe, S., et al., Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: insights from in situ U-Pb and Sr-Nd perovskite isotope analysis, Earth Planet. Sci. Lett., 2014, vol. 404, pp. 283–295.CrossRefGoogle Scholar
  72. Tappe, S., Foley, S.F., Jenner, G.A., and Kjarsgaard, B.A., Integrating ultramafic lamprophyres into the iugs classification of igneous rocks: rationale and implications, J. Petrol., 2005, vol. 46, no. 9, pp. 1893–1900.CrossRefGoogle Scholar
  73. Tappe, S., Foley, S.F., Jenner, G.A., et al., Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton, J. Petrol., 2006, vol. 47, no. 7, pp. 1261–1315.CrossRefGoogle Scholar
  74. Tappe, S., Foley, S.F., Stracke, A., et al., Craton reactivation on the Labrador Sea margins: 40Ar/39Ar age and Sr- Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives, Earth Planet. Sci. Lett., 2007, vol. 256, pp. 433–454.CrossRefGoogle Scholar
  75. Tappe, S., Foley, S.F., Kjarsgaard, B.A., et al., Between carbonatite and lamproite-diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes, Geochim. Cosmochim. Acta, 2008, vol. 72, no. 13, pp. 3258–3286.CrossRefGoogle Scholar
  76. Tappe, S., Steenfelt, A., Heaman, L.M., and Simonetti, A., The newly discovered Jurassic Tikiusaaq carbonatite–aillikite occurrence, west Greenland, and some remarks on carbonatite-kimberlite relationships, Lithos, 2009, vol. 112, pp. 385–399.CrossRefGoogle Scholar
  77. Tappe, S., Pearson, D.G., Nowell, G., et al., A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal, Earth Planet. Sci. Lett., 2011, vol. 305, pp. 235–248.CrossRefGoogle Scholar
  78. Tappe, S., Pearson, D.G., Kjarsgaard, B.A., et al., Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd-Hf isotope systematics at Lac de Gras, Canada, Earth Planet. Sci. Lett., 2013, vol. 371, pp. 235–251.CrossRefGoogle Scholar
  79. Tappe, S., Kjarsgaard, B.A., Kurszlaukis, S., et al., Petrology and Nd-Hf isotope geochemistry of the Neoproterozoic Amon kimberlite sills, Baffin Island (Canada): evidence for deep mantle magmatic activity linked to supercontinent cycles, J. Petrol., 2014, vol. 55, no. 10, pp. 2003–2042.CrossRefGoogle Scholar
  80. Taylor, W.R., Tompkins, L.A., and Haggerty, S.E., Comparative geochemistry of West African kimberlites: evidence for a micaceous kimberlite endmember of sublithospheric origin, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 19, pp. 4017–4037.CrossRefGoogle Scholar
  81. Thomsen, T.B. and Schmidt, M.W., Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle, Earth Planet. Sci. Lett., 2008, vol. 267, nos. 1–2, pp. 17–31.CrossRefGoogle Scholar
  82. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, no. 1, pp. 185–187.CrossRefGoogle Scholar
  83. Woolley, A.R., Bergman, S.C., Edgar, A.D., et al., Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks, Can. Mineral., 1996, vol. 34, no. 2, pp. 175–186.Google Scholar
  84. Yamashita, H., Arima, M., and Ohtani, E., High pressure melting experiments on group ii kimberlite up to 8 GPa: implications form mantle metasomatism, Abstract of 6th Int. Kimberlite Conf., Novosibirsk, 1995, pp. 669–671.Google Scholar
  85. Zack, T. and Brumm, R., Ilmenite/liquid partition coefficients of 26 trace elements determined through ilmenite/ clinopyroxene partitioning in garnet pyroxenites, 7th Int. Kimerlite Conf., 1998, pp. 986–988.Google Scholar
  86. Zaitsev, A.I. and Smelov, A.P., Izotopnaya geokhronologiya porod kimberlitovoi formatsii Yakutskoi provintsii (Isotope Heochronology of the Kimberlite Formation of the Yakutian Province), Yakutsk: IGABM SORAN, 2010.Google Scholar
  87. Ziberna, L., Nimis, P., Zanetti, A., et al., Metasomatic processes in the central Siberian cratonic mantle: evidence from garnet xenocrysts from the Zagadochnaya kimberlite, J. Petrol., 2013, vol. 54, no. 11, pp. 2379–2409.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Kargin
    • 1
  • Yu. Yu. Golubeva
    • 2
  • E. I. Demonterova
    • 3
  • E. V. Koval’chuk
    • 1
  1. 1.Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)Russian Academy of SciencesMoscowRussia
  2. 2.Central Institute of Geological Exploration for Base and Precious Metals (TsNIGRI)MoscowRussia
  3. 3.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations