, Volume 25, Issue 2, pp 139–149 | Cite as

Enigmatic cathodoluminescent objects in the Dhofar 025 lunar meteorite: Origin and sources



Dhofar 025 is a lunar highland breccia consisting mainly of anorthositic, with less common noritic, gabbronoritic, and troctolitic material. Rare fragments of low-Ti basalts are present as well, but no KREEP (component enriched in incompatible elements) was found in the meteorite. The cathodoluminescence study of this meteorite showed that its impact–melt matrix contains unusual cathodoluminescent (CL) objects of feldspathic composition, which frequently contain microlites of Fe-Mg spinel (pleonaste). They were presumably formed by impact mixing and melting of olivine and plagioclase with subsequent rapid quenching of the impact melts. Such mixing could happen either during assimilation of anorthosites by picritic/troctolitic magmas or during impact melting of troctolites. The enrichment of CL objects of Dhofar 025 in incompatible trace elements suggests that the mafic component of the impact mixture may be related to the high-magnesium suite rocks, which are frequently enriched in KREEP component. The depletion of CL objects in alkalis indicates their possible relation with residual glasses formed by evaporation. However, the presence of FeO in most objects points to the insignificant extent of evaporation. Thus, evaporation cannot explain the enrichment of the CL objects in Al2O3 and other refractory components, although this process definitely took place in their formation. Their similarity to the lunar pink spinel anorthosites, whose existence was predicted from orbital data, serves as an argument in support of the possible formation of the latters by impact mixing.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akridge, D.G., Akridge, J.M.C., Batchelor, J.D., et al., Photomosaics of the cathodoluminescence of 60 sections of meteorites and lunar samples, J. Geophys. Res., 2004, vol. 109, E07S03. doi 10.1029/2003JE002198CrossRefGoogle Scholar
  2. Bence, A.E. and Grove, T.L., The Luna 24 highland component, in Mare Crisium: the View from Luna 24, Merril, R.B.and Papike, J.J., Eds., New York: Pergamon, 1978, pp. 429–445.Google Scholar
  3. Cahill, J., Cohen, B.A., Taylor, L.A., and Nazarov, M.A., Mineralogy and petrology of “new” lunar meteorite Dhofar 025, Lunar Planet. Sci. Conf., 2001, vol. 32, Abs. # 1840. pdf.Google Scholar
  4. Cahill, J.T., Floss, C., Anand, M., et al., Petrogenesis of lunar highlands meteorites: Dhofar 025, Dhofar 081, Dar al Gani 262, and Dar al Gani 400, Meteorit. Planet. Sci., 2004, vol. 39, no. 4, pp. 503–529.CrossRefGoogle Scholar
  5. Cohen, B.A., Taylor, L.A., and Nazarov, M.A., Impact melt compositions in lunar meteorite dhofar 025, Lunar Planet. Sci. Conf., 2001, vol. 32, Abs. # 1409.pdf.Google Scholar
  6. Demidova, S.I., Nazarov, M.A., Taylor, L.A., and Patchen, A., Dhofar 304, 305, 306 and 307: new lunar highland meteorites from Oman, Lunar Planet. Sci. Conf., 2003, vol. 34, Abs. #1285.pdf.Google Scholar
  7. Demidova S.I., Nazarov M.A., Lorents K.A., et al., Chemical composition of lunar meteorites and the lunar crust, Petrology, 2007, vol. 15, no. 4, pp. 386–407.CrossRefGoogle Scholar
  8. Demidova, S.I., Nazarov, M.A., Ryazantsev, K.M., et al., Cordierite from the Dhofar 025 lunar feldspathic meteorite, Lunar Planet. Sci. Conf., 2015, vol. 46, Abs. # 1772.pdf.Google Scholar
  9. Demidova, S.I., Nazarov, M.A., Ryazantsev, K.M., et al., Enigmatic cathodoluminescent glasses in the Dhofar 025 lunar highland meteorite: evidence for impact origin of spinel anorthosites, Lunar Planet. Sci. Conf., 2016, vol. 47, Abs. # 1942.pdf.Google Scholar
  10. Dhingra, D., Pieters, C.M., Boardman, J.W., et al., Compositional diversity at Theophilus crater: understanding the geologic context of Mg-spinel bearing central peaks, Geophys. Res. Lett., 2011, vol. 38, L11201. Scholar
  11. Efimov, A.A., Nature of troctolite, Dokl. Akad. Nauk SSSR, 1985, vol. 281, no. 6, pp. 1419–1423.Google Scholar
  12. Götze, J., Application of cathodoluminescence microscopy and spectroscopy in geosciences, Microsc. Microanal, 2012, vol. 18, pp. 1270–1284.CrossRefGoogle Scholar
  13. Götze, J. and Kempe, U., Cathodoluminescence microscopy and spectroscopy of lunar rocks and minerals, Cathodoluminescence and its Applications to Geosciences, Gucsik, A., Ed., Berlin–Heidelberg–New York: Springer, 2009, pp. 1–22.CrossRefGoogle Scholar
  14. Götze, J., Habermann, D., Kempe, U., et al., Cathodoluminescence microscopy and spectroscopy of plagioclases from lunar soil, Am. Mineral., 1999, vol. 84, pp. 1027–1032.CrossRefGoogle Scholar
  15. Gross, J. and Treiman, A.H., Unique spinel-rich lithology in lunar meteorite ALHA 81005: origin and possible connection to M3 observations of the farside highlands, J. Geophys. Res., 2011, vol. 116, p. E10009. http:/ Scholar
  16. Gross, J., Isaacson, P.J., Treiman, A.H., et al., Spinel-rich lithologies in the lunar highland crust: linking lunar samples with crystallization experiments and remote sensing, Am. Mineral., 2014, vol. 99, pp. 1849–1859.CrossRefGoogle Scholar
  17. Gucsik, A., Koeberl, C., Brandstätter, F., et al., Infrared, Raman, and cathodoluminescence studies of impact glasses, Meteorit. Planet. Sci., 2004, vol. 39, no. 8, pp. 1273–1285.CrossRefGoogle Scholar
  18. Jochum, K.P., Weis, U., Stoll, B., et al., Determination of reference values for NIST SRM 610-617 glasses folliwing ISO guidelines, Geostand. Geoanal. Res., 2011, vol. 35, pp. 397–429.CrossRefGoogle Scholar
  19. Keller, L.P. and McKay, D.S., Micrometer-sized glass spheres in Apollo 16 Soil 61181: implications for impact volatilization and condensation, Proc. Lunar Planet. Sci., 1992, vol. 22, pp. 137–141.Google Scholar
  20. Korotev, R.L., Lunar geochemistry as told by lunar meteorites, Chem. Erde, 2005, vol. 65, pp. 297–346.CrossRefGoogle Scholar
  21. Korotev, R.L., Lunar meteorites from Oman, Meteorit. Planet. Sci., 2012, vol. 47, pp. 1365–1402.CrossRefGoogle Scholar
  22. Lal, D., Chauhan, P., Shah, R.D., Bhattacharya, S., et al., Detection of Mg spinel lithologies on central peak of crater Theophilus using Moon Mineralogy Mapper (M3) data from Chandrayaan-1, J. Earth Syst. Sci., 2012, vol. 121, pp. 847–853.CrossRefGoogle Scholar
  23. Leont’eva E.M., Matukov D.I., Nazarov M.A., et al., First Determination of the Isotopic Age of a Lunar Meteorite by the Uranium–Lead Zircon Method, Petrology, 2005, vol. 13, no. 2, pp. 193–196.Google Scholar
  24. Markova, O.M., Yakovlev, O.I., Semenov, G.A., and Belov, A.N., Some general results of experiments on evaporation of natural melts in Knudesen Cell, Geokhimiya, 1986, no. 11, pp. 1559–1568.Google Scholar
  25. Naney, M.T., Crowl, D.M., and Papike, J.J., The “Apollo-16” drill core: statistical analysis of glass chemistry and the characterization of a high alumina-silica poor (HASP) glass, Proc. Lunar Planet. Sci., 1976, vol. 7, pp. 155–184.Google Scholar
  26. Nazarov, M.A., Demidova, S.I., Patchen, A., and Taylor, L.A., Dhofar 301, 302 and 303: three new lunar highland meteorites from Oman, Lunar Planet. Sci. Conf., 2002, vol. 33, Abs. # 1293.pdf.Google Scholar
  27. Nazarov, M.A., Demidova, S.I., and Taylor, L.A., Trace element chemistry of lunar highland meteorites from Oman, Lunar Planet. Sci. Conf., 2003, vol. 34, Abs. # 1636.pdf.Google Scholar
  28. Nazarov, M.A., Demidova, S.I., Anosova, M.O. et al., Native silicon and iron silicides in the Dhofar 280 lunar meteorite, Petrology, 2012, vol. 20, no. 6, pp. 506–519.CrossRefGoogle Scholar
  29. Nishiizumi, K. and Caffee, M.W., Exposure histories of lunar meteorites Dhofar, 025, 026, and Northwest Africa 482, 64th Met. Soc. Meeting, 2001, Abs. #5411.pdf.Google Scholar
  30. Osborn, E.F. and Tait, D.B., The system diopside–forsterite–anorthite, Am. J. Sci., 1952, Bowen vol., pp. 413–433.Google Scholar
  31. Papike, J.J., Spilde, M.N., Adcock, C.T., et al., Trace element fractionation by impact-induced volatilization: SIMS study of lunar HASP glasses, Lunar Planet. Sci. Conf., 1997, vol. 28, Abs. 1041.Google Scholar
  32. Pieters, C.M., Besse, S., Boardman, J., et al., Mg-spinel lithology: a new rock-type on the lunar farside, J. Geophys. Res., 2011, vol. 116, E00G08.CrossRefGoogle Scholar
  33. Pieters, C.M., Hanna, K.D., Cheek, L., et al., The distribution of Mg-spinel across the moon and constraints on crustal origin, Am. Mineral., 2014, vol. 99, pp. 1893–1910.CrossRefGoogle Scholar
  34. Prissel, T.C., Parman, S.W., Jackson, C.R.M., et al., Pink Moon: the petrogenesis of pink spinel anorthosites and implications concerning Mg-suite magmatism, Earth Planet. Sci. Lett., 2014, vol. 403, pp. 144–156.CrossRefGoogle Scholar
  35. Sippel, R.F., Luminescence petrography of the “Apollo-12” rocks and comparative features in terrestrial rocks and meteorites, Proc. Lunar Planet. Sci., 1971, vol. 2, pp. 247–263.Google Scholar
  36. Tarasov, L.S., Nazarov, M.A., Shevaleeevskii, I.D., et al., Petrography of rocks and chemical composition of minerals in a regolith from Mare Crisium, in Lunnyi grunt iz Morya Krizisov (Regolith from Mare Crisium), Moscow: Nauka, 1980, pp. 78–96.Google Scholar
  37. Taylor, L.A. and Pieters, C.M., Pink-spinel anorthosite formation: considerations for a feasible petrogenesis, Lunar Planet. Sci. Conf., 2013, vol. 44, abs. # 2785.pdf.Google Scholar
  38. Taylor, L.A., Nazarov, M.A., Cohen, B.A., et al., Bulk chemistry and oxygen isotopic compositions of lunar meteorites Dhofar 025 and Dhofar 026: a second-generation impact melt, Lunar Planet. Sci. Conf., 2001, vol. 32, abs. # 1985. pdf.Google Scholar
  39. Treiman, A.H., Gross, J., and Glazner, A.F., Lunar rocks rich in Mg-Al spinel: enthalpy constraints suggest origins by impact melting, Lunar Planet. Sci. Conf., 2015, vol. 46, abs. # 2518.pdf.Google Scholar
  40. Treiman, A.H., Maloy, A.K., Shearer, C.K., Jr., and Gross, J., Magnesian anorthositic granulites in lunar meteorites Allan Hills 81005 and Dhofar 309. Geochemistry and global significance, Meteorit. Planet. Sci., 2010, vol. 45, pp. 163–180.CrossRefGoogle Scholar
  41. van Achterbergh, E., Ryanm, C.G., and Griffin, W.L., GLITTER: on-line interactive data reduction for the laser ablation ICP-MS microprobe, Proc. 9th Goldschmidt Conf., Cambridge: Massachusetts, 1999, p. 305.Google Scholar
  42. Vaniman, D.T., Glass variants and multiple hasp trends in Apollo 14 regolith breccias, Proc. Lunar Planet. Sci., 1990, vol. 20, pp. 209–217.Google Scholar
  43. Warren, P.H. and Kallemeyn, G.W., QUE93069: a lunar meteorite rich in HASP glasses, Proc. Lunar Planet. Sci. Conf., 1995, vol. 26, abs. # 1465.Google Scholar
  44. Warren, P.H., Taylor, L.A., Kallemeyn, G.W., et al., Bulkcompositional study of three lunar meteorites: enigmatic siderophile element results for Dhofar 026, Lunar Planet. Sci. Conf., 2001, vol. 32, abs. # 2197.Google Scholar
  45. Warren, P.H., The Moon, in Treatise on Geochemistry, Davis, A.M., Ed., Oxford: Elsevier, 2003, vol. 1, pp. 559–599.CrossRefGoogle Scholar
  46. Warren, P.H., Ulff-Møller, F., and Kallemeyn, G.W., “New” lunar meteorites: impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust, Meteorit. Planet. Sci., 2005, vol. 40, pp. 989–1014.CrossRefGoogle Scholar
  47. Yakovlev, O.I., Gerasimov, M.V., Dikov, Yu.P., Estimation of temperature conditions for the formation of HASP and GASP glasses from the lunar regolith, Geochem. Int., 2011, vol. 49, no. 3, pp. 213–223.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryMoscowRussia
  2. 2.Departament für Lithosphärenforschung, Universität WienWienÖsterreich
  3. 3.Naturhistorisches MuseumWienÖsterreich

Personalised recommendations