Advertisement

Petrology

, Volume 24, Issue 6, pp 527–542 | Cite as

Age and sources of the anorthosites of the Neoarchean Kolmozero-Voron’ya greenstone belt (Fennoscandian Shield)

  • A. B. Vrevskii
Article

Abstract

New data are reported on U-Pb (SHRIMP-II) age (2662 ± 7 Ma), isotope (Sm-Nd) and geochemical compositions of the anorthosites of the Patchemvarek Massif and “ovoidal” anorthosite sills of the Neoarchean Kolmozero-Voron’ya greenstone belt. Mesoarchean (2938 ± 8 Ma) zircons found in the Patchemvarek anorthosite have low Th/U ratio, are overgrown by a thin rim, and may be interpreted as xenogenic crystals assimilated by primary melts of the gabbro-anorthosite massifs from host Mesoarchean tonalites during crystallization in a magmatic chamber. The “ovoidal” anorthosite sills are dated at 2730–2740 Ma on the basis of U-Pb local zircon isotope analysis. The sills of the “ovoidal” anorthosites in the Kolmozero-Voron’ya GSB represent the older (2730–2740 Ma) rock group, which differs from the Patchemvarek anorthosites in strongly depleted Nd isotope composition and some geochemical features. In terms of age and Sm-Nd isotope characteristics, the “ovoidal” anorthosites are close to the komatiites of the lower volcanogenic sequence (εNd(Т) + 3.0–3.2), and metaandesites (2778 ± 5.4 Ma, U-Pb TIMS, εNdТ + 3.5) and metatholeiites of the upper volcanogenic sequence (εNd(Т) + 3.5–3.7) of the supracrustal complex of the Kolmozero-Voron’ya GSB.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balagansky, V.V., Myskova, T.A., and Skublov, S.G., On age of felsic metavolcanics of the Archean Lebyazhinskaya Sequence, Kola Peninsula, Baltic Shield, in Geologiya i geokhronologiya porodoobrazuyushchikh i rudnykh protsessov v kristallicheskikh shchitakh: Materialy Vserossiiskoi konferentsii (Geology and Geochronology of Rock-Forming and Ore Processes in Crystalline Shields: Proceedings of All-Russian Conference) Moscow K & M: Apatity, 2013), pp. 17–20.Google Scholar
  2. Bayanova, T.B., Vozrast repernykh geologicheskikh kompleksov Kol’skogo regiona i dlitel’nostkm2 protsessov magmatizma (Age of the Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes), St. Petersburg: Nauka, 2004.Google Scholar
  3. Bayanova, T.B., Pozhilenko, V.I., Smol’kin, V.F., et al., Katalog geokhronologicheskikh dannykh po severo-vostochnoi chasti Baltiiskogo shchita (Catalogue of Geochronological Data on the Northeastern Baltic Shield), Apatity: KNTs RAN, 2002.Google Scholar
  4. Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., and Fisher, N.I., Igneous zircon: trace element composition as an indicator of source rock type, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 602–622.CrossRefGoogle Scholar
  5. Belousova, E.A., Griffin, W.L., and O’Reilly, S.Y., Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids, J. Petrol., 2006, vol. 47, no. 2, pp. 329–353.Google Scholar
  6. Black, L.P., Kamo, S.L., Allen, C.M., et al., Temora 1: a new zircon standard for U-Pb geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.CrossRefGoogle Scholar
  7. Fedotova, A.A., Bibikova, E.V., and Simakin, S.G., Ionmicroprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies, Geochem. Int., 2008, vol. 46, no. 9, pp. 912–927.CrossRefGoogle Scholar
  8. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.CrossRefGoogle Scholar
  9. Hoskin, P.W.O. and Schaltegger, U., Zircon, Rev. Mineral. Geochem., 2003, vol. 53, p. 27.CrossRefGoogle Scholar
  10. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.CrossRefGoogle Scholar
  11. Kozlov, E.A., Sorokhtin, N.O., Glaznev, V.N., et al., Geologiya arkheya Baltiiskogo shchita (Archean Geology of the Baltic Shield), St. Petersburg: Nauka, 2006.Google Scholar
  12. Kudryashov, N.M. and Mokrushin, A.V., Mesoarchean gabbroanorthosite magmatism of the Kola Region: petrochemical, geochronological, and isotope-geochemical data, Petrology, 2011, vol. 19, no. 2, pp. 167–182.Google Scholar
  13. Kudryashov, N.M., Mokrushin, A.V., and Elizarov, D.V., Oldest gabbro–anorthosite magmatism of the Kola Region: geochemical and isotope-geochronological data, in Izotopnye sistemy i vremya geologicheskikh protsessov (Isotope Systems and Timing of Geological Processes), St. Petersburg, 2009, vol. II, pp. 291–293.Google Scholar
  14. Kudryashov, N.M., Kalinin, A.A., and Lyalina, L.M., Geochronological and isotope-geochemical characteristics of the rocks hosting the Oleninskoe and Nyal’m-1 gold occurrences of the Kolmozero-Voron’ya greenstone belt, Kola Peninsula, in Zoloto Fennoskandii (Gold of Fennoscandia), Petrozavodsk: KarNTs RAN, 2013, pp. 101–106.Google Scholar
  15. Ludwig, K.R., A user’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center. Sp. Publ., 2000, no. 2.Google Scholar
  16. McDonough, W.F. and Sun, S.-S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 223–253.CrossRefGoogle Scholar
  17. Mints, M.V., 3D model of deep structure of the Early Precambrian crust in the East European Craton and paleogeodynamic implications, Geotectonics, 2011, vol. 45, no. 4, pp. 267–290.CrossRefGoogle Scholar
  18. Mitrofanov, F.P. and Nerovich, L.I., Timing of magmatic crystallization and metamorphic transformations in the Pyrshin and Abvar autonomous anorthosite massifs, Lapland Granulite Belt, Petrology, 2003, vol. 11, no. 4, pp. 343–351.Google Scholar
  19. Myskova, T.A., Berezhnaya, N.G., Glebovitskii, V.A., et al., Findings of the oldest (3600 Ma) zircons in gneisses of the Kola Group, Central Kola Block, Baltic Shield: evidence from U–Pb (SHRIMP-II) Data, Dokl. Earth Sci., 2005, vol. 402, no. 1, pp. 547–550.Google Scholar
  20. Myskova, T.A., Mil’kevich, R.I., Glebovitskii, V.A., et al., New data on the U–Pb (SHRIMP II) age of zircons from aluminous gneisses of the Archean Kola Group of the Baltic Shield and the problem of their interpretation, Dokl. Earth Sci., 2015, vol. 463, no. 3, pp. 738–745.CrossRefGoogle Scholar
  21. Ovchinnikova, G.V., Yakovleva, S.Z., and Kutyavin, E.P., U-Pb systems of gneisses of the lake Litsa Lake area (Kolmozero-Voron’ya zone, Kola Peninsula), in Sovremennye dannye izotopnoi geokhimii i kosmokhimii (Modern Data on Isotope Geochemistry and Cosmochemistry), Leningrad: Nauka, 1985, pp. 78–81.Google Scholar
  22. Sharkov, E.V., Anorthosite associations of the Kola Peninsula, in Anortozity Zemli i Luny (Anorthosites of the Earth and Moon), Ed. by A. V. Peive, Moscow: Nauka, 1984.Google Scholar
  23. Vetrin, V.R., Kamenskii, T.B., Bayanova, T.B., et al., Melanocratic nodules in alkaline granites of the Ponoiskii Massif, Kola Peninsula: a clue to petrogenesis, Geochem. Int., 1999, vol. 37, no. 11, pp. 1061–1072.Google Scholar
  24. Vetrin, V.R. and Rodionov, N.V., Geology and geochronology of Neoarchean anorogenic magmatism of the Keivy Structure, Kola Peninsula, Petrology, 2009, vol. 17, no. 6, pp. 537–557.CrossRefGoogle Scholar
  25. Vrevskii, A.B., Petrologiya i geodinamicheskie rezhimy razvitiya arkheiskoi litosfery (na primere severo-vostochnoi chasti Baltiiskogo shchita) (Petrology and Geodynamic Regimes of the Evolution of the Archean Lithosphere by the Example of the Northeastern Baltic Shield) Leningrad: Nauka, 1989.Google Scholar
  26. Vrevskii, A.B., Kola–Norwegian Province. Archean, in Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), Glebovitskii, V.A., Ed., St. Petersburg: Nauka, 2005, pp. 10–58.Google Scholar
  27. Vrevskii, A.B., Geochemical and isotopic signatures of nonsubduction mechanisms of formation of the Neoarchean continental lithosphere of the Fennoscandian Shield, Dokl. Earth Sci., 2009, vol. 429A, no. 6, pp. 1575–1579.CrossRefGoogle Scholar
  28. Vrevsky, A.B., Petrology,age,and polychronous sources of the initial magmatism of the Imandra–Varzuga paleorift, Fennoscandian Shield, Petrology, 2011, vol. 19, no. 5, pp. 521–547.CrossRefGoogle Scholar
  29. Vrevsky, A.B., Age and isotope geochemistry of ore-hosting granodiorites of the Nyal’m-1 Gold Deposit (Kolmozero–Voron’ya Greenstone Belt, Kola Peninsula), Dokl. Earth Sci., 2012, vol. 442, no. 2, pp. 100–104.CrossRefGoogle Scholar
  30. Vrevsky, A.B., Matrenichev, V.A., and Ruzh’eva, M.S., Sm-Nd systematics of the komatiites of the Baltic Shield, in Izotopnoe datirovanie geologicheskikh protsessov: novye metody i rezul’taty (Isotope Dating of Geological Processes: New Methods and Results), Moscow: GEOS, 2000, pp. 96–99.Google Scholar
  31. Vrevsky, A.B., Matrenichev, V.A., and Ruzh’eva, M.S., Petrology of komatiites from the Baltic Shield and isotope geochemical evolution of their mantle sources, Petrology, 2003, vol. 11, no. 6, pp. 532–561.Google Scholar
  32. Vulkanizm i sedimentogenez dokembriya severo-vostoka Baltiiskogo shchita (Precambrian Volcanism and Sedmentogenesis of the Northeastern Baltic Shield), Leningrad: Nauka, 1987, p. 185.Google Scholar
  33. Watson, E.B., Wark, D.A., and Thomas, J.B., Crystallization thermometers for zircon and rutile, Contrib. Mineral. Petrol., 2006, vol. 151, pp. 413–433.CrossRefGoogle Scholar
  34. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.CrossRefGoogle Scholar
  35. Williams, I.S., U-Th-Pb geochronology by ion microprobe, in Applications of Microanalytical Techniques to Understanding Mineralizing Processes, McKibben, M.A., Shanks, W.C., and Ridley W.I., Eds., Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.Google Scholar
  36. Yudin, B.A., Gabbro-labradoritovaya formatsiya Kol’skogo poluostrova i ee metallogeniya (Gabbro–Labradorite Formation of the Kola Peninsula and its Metallogeny), Leningrad: Nauka, 1980.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations