, Volume 25, Issue 1, pp 42–65 | Cite as

Paleozoic tholeiitic magmatism of the Kola province: Spatial distribution, age, and relation to alkaline magmatism

  • A. A. Arzamastsev
  • R. V. Vesolovskiy
  • A. V. Travin
  • D. S. Yudin
  • B. V. Belyatsky


This paper focuses on the occurrences of tholeiitic magmatism in the northeastern Fennoscandian shield. It was found that numerous dolerite dikes of the Pechenga, Barents Sea, and Eastern Kola swarms were formed 380–390 Ma ago, i.e., directly before the main stage of the Paleozoic alkaline magmatism of the Kola province. The isotope geochemical characteristics of the dolerites suggest that their primary melts were derived from the mantle under the conditions of the spinel lherzolite facies. The depleted mantle material from which the tholeiites were derived shows no evidence for metasomatism and enrichment in high fieldstrength and rare earth elements, whereas melanephelinite melts postdating the tholeiites were generated in an enriched source. It was shown that the relatively short stage of mantle metasomatism directly after the emplacement of tholeiitic magmas was accompanied by significant mantle fertilization. In contrast to other large igneous provinces, where pulsed intrusion of large volumes of tholeiitic magmas coinciding or alternating with phases of alkaline magmatism was documented, the Kola province is characterized by systematic evolution of the Paleozoic plume–lithosphere process with monotonous deepening of the level of magma generation, development of mantle metasomatism and accompanying fertilization of mantle materials, and systematic changes in the composition of melts reaching the surface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amelin, Ju.V. and Zaitsev, A.N., Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations, Geochim. Cosmochim. Acta, 2002, vol. 66, no. 13, pp. 2399–2419.CrossRefGoogle Scholar
  2. Andersen, T. and Sundvoll, B., Neodymium isotope systematics of the mantle beneath the Baltic Shield: evidence for depleted mantle evolution since the Archaean, Lithos, 1995, vol. 35, pp. 235–243.CrossRefGoogle Scholar
  3. Arzamastsev, A.A. and Mitrofanov, F.P., Paleozoic plume–lithospheric processes in northeastern Fennoscandia: evaluation of the composition of the parental mantle melts and magma generation conditions, Petrology, 2009, vol. 17, no. 3, pp. 300–314.CrossRefGoogle Scholar
  4. Arzamastsev, A.A. and Wu Fu-Yan, U–Pb geochronology and Sr–Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola Province, Petrology, 2014, vol. 22, no. 5, pp. 462–479.CrossRefGoogle Scholar
  5. Arzamastsev, A.A., Arzamastseva, L.V., and Belyatskii, B.V., Alkaline volcanism of the initial phase of Paleozoic tectonomagmatic reactivation in northeastern Fennoscandia: geochemical features and petrologic consequences, Petrology, 1998, vol. 6, no. 3, pp. 293–311.Google Scholar
  6. Arzamastsev, A.A., Bayanova, T.B., Arzamastseva, L.V., et al., Initial magmatism related to the Paleozoic tectonomagmatic reactivation in the northeastern Baltic Shield: the age and geochemistry of the Kurga Massif, Kola Peninsula, Geochem. Int., 1999, vol. 37, no. 11, pp. 1025–1035.Google Scholar
  7. Arzamastsev, A.A., Fedotov, Zh.A., and Arzamastseva, L.V., Daikovyi magmatizm severo-vostochnoi chasti Baltiiskogo shchita (Dike Magmatism of the Northeastern Baltic Shield), St. Petersburg: Nauka, 2009.Google Scholar
  8. Bea, F., Arzamastsev, A., Montero, P., and Arzamastseva, L., Anomalous alkaline rocks of Soustov, Kola: evidence of mantle-derived metasomatic fluids affecting crustal materials, Contrib. Mineral. Petrol., 2001, vol. 140, pp. 554–566.CrossRefGoogle Scholar
  9. Beattie, P., Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral–melt partitioning, Chem. Geol., 1994, vol. 117, pp. 57–71.CrossRefGoogle Scholar
  10. Beckinsale, R.D., Reading, H.G., and Rex, D.C., Potassium–argon ages for basic dykes from East Finnmark: stratigraphical and structural implication, Scott. J. Geol., 1976, vol. 12, pp. 1–91.CrossRefGoogle Scholar
  11. Bell, K. and Rukhlov, A.S., Carbonatites from the Kola alkaline province: origin, evolution and source characteristics, in Phoscorites and Carbonatites from Mantle to Mine, Wall, F. and Zaitsev, A.N., Eds., Mineral. Soc. Ser., 2004, vol. 10, pp. 433–468.Google Scholar
  12. Bingen, B. and Demaiffe, D., Geochemical signature of the Egersund basaltic dyke swarm, SW Norway, in the context of Late-Neoproterozoic opening of the Iapetus ocean, Norsk Geologisk Tidsskrift, 1999, vol. 79, pp. 69–86.CrossRefGoogle Scholar
  13. Borodin, L.S. and Gladkikh, V.S., New petrographic and geochemical data on the volcanogenic alkaline rocks of the Kontozero Formation, in Novye dannye po geologii, mineralogii i geokhimii shchelochnykh porod (New Data on the Geology, Mineralogy, and Geochemistry of Alkaline Rocks), Moscow: Nauka, 1973, pp. 48–55.Google Scholar
  14. Borodin, L.S., Gladkikh, V.S., and Egorova, N.F., Petrology and geochemistry of the volcanic rocks of the Lovozero alkaline massif with application to genetic problems, in Novye dannye po geologii, mineralogii i geokhimii shchelochnykh porod (New Data on the Geology, Mineralogy, and Geochemistry of Alkaline Rocks), Moscow: Nauka, 1973, pp. 25–47.Google Scholar
  15. Borutskii, B.E., Porodoobrazuyushchie mineraly vysokoshchelochnykh kompleksov (Rock-Forming Minerals of Highly Alkaline Complexes), Moscow: Nauka, 1988.Google Scholar
  16. Burov, E., Guillou-Frottier, L., d’Acremont, E., et al., Plume head–lithosphere interactions near intra-continental plate boundaries, Tectonophysics, 2007, vol. 434, pp. 15–38.CrossRefGoogle Scholar
  17. Bussen, I.V. and Sakharov, A.S., Lovozerskaya osadochnovulkanogennaya paleozoiskaya svita Luyavrurta (Kol’skii poluostrov). Voprosy litologii fanerozoya Kol’skogo poluostrova (Paleozoic Lovozero Sedimentary–Volcanogenic Lujavrurta Formation (Kola Peninsula)), Leningrad: Nauka, 1972.Google Scholar
  18. Chazen, S.I. and Vogel, T.A., Distribution of Ti and P in oceanic basalts as a test of origin, Contrib. Mineral. Petrol., 1974, vol. 43, pp. 307–316.CrossRefGoogle Scholar
  19. Comin-Chiaramonti, P., Cundari, A., Piccirillo, E.M., et al., Potassic and sodic igneous rocks from eastern Paraguay: their origin from the lithospheric mantle and genetic relationships with the associated Parana flood tholeiites, J. Petrol., 1997, vol. 38, no. 4, pp. 495–528.CrossRefGoogle Scholar
  20. Downes, H., Balaganskaya, E.G., Beard, A., et al., Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola alkaline province: a review, Lithos, 2005, vol. 85, pp. 48–75.CrossRefGoogle Scholar
  21. Ernst, R. and Bell, K., Large igneous provinces (LIPs) and carbonatites, Mineral. Petrol., 2010, vol. 98, pp. 55–76.CrossRefGoogle Scholar
  22. Evensen, N.M., Hamilton, P.J., and O’Nions, R.K., Rare earth abundances in chondritic meteorites, Geochim. Cosmochim. Acta, 1978, vol. 42, no. 8, pp. 1199–1212.CrossRefGoogle Scholar
  23. Fedotov, Zh.A. and Amelin, Yu.V., Post-Svecofennian dolerite dikes of the Kola region: dual nature of cratonic magmatism, Vestn. Murmansk. Gos. Tekh. Univ., 1998, vol. 1, no. 3, pp. 33–42.Google Scholar
  24. Glaznev, V.N., Kompleksnye geofizicheskie modeli litosfery Fennoskandii (Complex Geophysical Models of the Fennoscandian Lithosphere), Apatity: K & M, 2003.Google Scholar
  25. Glaznev, V.N., Raevsky, A.B., and Skopenko, G.B., A three-dimensional integrated density and thermal model of Fennoscandian lithosphere, Tectonophysics, 1996, vol. 258, nos. 1–4, pp. 15–33.CrossRefGoogle Scholar
  26. Green, T.H., Significance of Nb/Ta as an indicator of geochemical processes in the crust–mantle system, Chem. Geol., 1995, vol. 120, pp. 347–359.CrossRefGoogle Scholar
  27. Guise, P.G. and Roberts, D., Devonian ages from 40Ar/39Ar dating of plagioclase in dolerite dykes, eastern Varanger Peninsula, North Norway, Norsk Geol. Under. Bull., 2002, vol. 440, pp. 27–37.Google Scholar
  28. Hofmann, A.W., Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust, Earth Planet. Sci. Lett., 1988, vol. 90, pp. 297–314.CrossRefGoogle Scholar
  29. Ivanov, A.V., Evaluation of different models for the origin of the Siberian traps, Plates, Plumes and Planetary Processes, Foulger, G.R. and Jurdy, D.M., Eds., Geol. Soc. Am. Spec. Pap., 2007, vol. 430, pp. 669–691.Google Scholar
  30. Ivanov, A.V., He, H., Yan, L., et al., Siberian traps large igneous province: evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism, Earth Sci. Rev., 2013, vol. 122, pp. 58–76.CrossRefGoogle Scholar
  31. Johnson, K.T.M., Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures, Contrib. Mineral. Petrol., 1998, vol. 133, pp. 60–68.CrossRefGoogle Scholar
  32. Kieffer, B., Arndt, N., Lapierre, H., et al., Flood and shield basalts from Ethiopia: magmas from the African superswell, J. Petrol., 2004, vol. 45, no. 4, pp. 793–834.CrossRefGoogle Scholar
  33. Kirichenko, L.A., Kontozerskaya seriya kamennougol’nykh porod na Kol’skom poluostrove (Kontozero Group of Carboniferous Rocks on the Kola Peninsula), Leningrad: Nedra, 1970.Google Scholar
  34. Kogarko, L.N. and Zartman, R.E., A Pb isotope investigation of the Guli massif, Maymecha-Kotuy alkaline–ultramafic complex, Siberian flood basalt province, Polar Siberia, Mineral. Petrol., 2007, vol. 89, pp. 113–132.CrossRefGoogle Scholar
  35. Kogarko, L.N., Lahaye, Y., and Brey, G.P., Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics, Mineral. Petrol., 2010, vol. 98, pp. 197–208.CrossRefGoogle Scholar
  36. Koptev, A.I., Calais, E., Burov, E.B., et al., Dual continental rift systems generated by plume–lithosphere interaction, Nature Geosci., 2015, vol. 8, pp. 388–392.CrossRefGoogle Scholar
  37. Korchak, Yu.A., Men’shikov, Yu.P., Pakhomovskii, Ya.A., et al., Trap Formation of the Kola Peninsula, Petrology, 2011, vol. 19, no. 1, pp. 87–101.CrossRefGoogle Scholar
  38. Kramm, U., Mantle components of carbonatites from the Kola alkaline province, Russia and Finland: a Nd–Sr study, Eur. J. Mineral., 1993, vol. 5, pp. 985–989.CrossRefGoogle Scholar
  39. Kramm, U. and Kogarko, L.N., Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola alkaline province, Russia, Lithos, 1994, vol. 32, pp. 225–242.CrossRefGoogle Scholar
  40. Kramm, U., Kogarko, L.N., Kononova, V.A., et al., The Kola alkaline province of the CIS and Finland: precise Rb–Sr ages define 380–360 age range for all magmatism, Lithos, 1993, vol. 30, pp. 33–44.CrossRefGoogle Scholar
  41. Kukkonen, I.T., Heat production map of northern and central part of Fennoscandian shield based on geochemical surveys of heat producing elements, Tectonophysics, 1993, vol. 225, nos. 1–2, pp. 3–14.CrossRefGoogle Scholar
  42. Kukkonen, I.T. and Peltonen, P., Xenolith-controlled geotherm for the central Fennoscandian shield: implications for lithosphere–asthenosphere relations, Tectonophysics, 1999, vol. 304, pp. 301–315.CrossRefGoogle Scholar
  43. Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., et al., Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotopic evidence from picritic and tholeiitic lavas of the Noril’sk district, Siberian trap, Russia, Contrib. Mineral. Petrol., 1993, vol. 114, pp. 171–188.CrossRefGoogle Scholar
  44. Marty, B., Tolstikhin, I., Kamensky, I.L., et al., Plumederived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition in the deep mantle, Earth Planet. Sci. Lett., 1998, vol. 164, pp. 179–192.CrossRefGoogle Scholar
  45. McKenzie, D. and O’Nions, R.K., Partial melt distributions from inversion of rare earth element concentrations, J. Petrol., 1991, vol. 32, no. 5, pp. 1021–1091.CrossRefGoogle Scholar
  46. Owen-Smith, T.M., Ashwal, L.D., Torsvik, T.H., et al., Seychelles alkaline suite records the culmination of Deccan traps continental flood volcanism, Lithos, 2013, vol. 182–183, pp. 33–47.CrossRefGoogle Scholar
  47. Pavlov, V.E., Fluto, F., Veselovskii, R.V., et al., Secular geomagnetic variations and volcanic pulses in the Permian–Triassic traps of the Norilsk and Maimecha–Kotui provinces, Izv. Phys. Solid Earth, 2011, vol. 47, no. 5, pp. 402–417.CrossRefGoogle Scholar
  48. Pearce, J.A., The role of subcontinental lithosphere in magma genesis at destructive plate margins, in Continental Basalts and Mantle Xenoliths, Hawkesworth C.J. and Norry M.J., Eds., Nantwich: Shiva, 1983, pp. 230–249.Google Scholar
  49. Prinzhofer, A. and Allegre, C.J., Residual peridotites and mechanism of partial melting, Earth Planet. Sci. Lett., 1985, vol. 74, nos. 2–3, pp. 251–265.CrossRefGoogle Scholar
  50. Puchtel, I.S., Haase, K., Hofmann, A.W., et al., Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 1205–1222.CrossRefGoogle Scholar
  51. Pyatenko, I.K. and Osokin, E.D., Geochemical features of the Kontozero carbonatite paleovolcano on the Kola Peninsula, Geokhimiya, 1988, no. 5, pp. 723–737.Google Scholar
  52. Roberts, D. and Onstott, T.C., 40Ar/39Ar laser microprobe analyses and geochemistry of dolerite dykes from the Rybachi and Sredni peninsulas, NW Kola, Russia, Norsk. Geol. Unders. Spec. Publ., 1995, vol. 7, pp. 307–314.Google Scholar
  53. Roberts, D., Mitchell, J.G., and Andersen, T.B., A post-Caledonian dolerite dyke from Magerøy, North Norway: age and geochemistry, Norsk. Geologisk. Tidsskrift, 1991, vol. 71, pp. 289–294.Google Scholar
  54. Robinson, J.A.C. and Wood, B.J., The depth of the spinel to garnet transition at the peridotite solidus, Earth Planet. Sci. Lett., 1998, vol. 164, pp. 277–284.CrossRefGoogle Scholar
  55. Rudnick, R.L. and Gao, S., in Treatise on Geochemistry, Rudnick, R.L., Holland, H.D., and Turekian, K.K, Eds., Amsterdam: Elsevier, 2003, vol. 3, pp. 1–64.CrossRefGoogle Scholar
  56. Rukhlov, A.S. and Bell, K., Geochronology of carbonatites from the Canadian and Baltic shields, and the Canadian Cordillera: clues to mantle evolution, Mineral. Petrol., 2010, vol. 98, pp. 11–54.CrossRefGoogle Scholar
  57. Rusanov, M.S., Arzamastsev, A.A., and Khmelinskii, V.I., New volcanoplutonic complex in the Kola alkaline province: geology and composition, Otechestvennaya Geol., 1993, no. 10, pp. 46–52.Google Scholar
  58. Salters, V.J.M. and Longhi, J., Trace element partitioning during the initial stages of melting beneath mid-ocean ridges, Earth Planet. Sci. Lett., 1999, vol. 166, pp. 15–30.CrossRefGoogle Scholar
  59. Salters, V.J.M. and Stracke, A., Composition of the depleted mantle, Geochem., Geophys., Geosyst., 2004, vol. 5, no. 5, pp. 1–27.CrossRefGoogle Scholar
  60. Sharma, M., Siberian traps, in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism, Mahoney J.J. and Coffin M.F. Eds., Am. Geophys. Union Monogr., 1997, pp. 273–295.Google Scholar
  61. Sharov, N.V., Litosfera Baltiiskogo shchita po seismicheskim dannym (Lithosphere of the Baltic Shield from Seismic Data), Apatity: Izd. Kol’skogo NTs RAN, 1993.Google Scholar
  62. Shipilov, E.V., Late Mesozoic magmatism and Cenozoic tectonic deformations of the Barents Sea continental margin: effect on hydrocarbon potential distribution, Geotectonics, 2015, vol. 49, no. 1, pp. 53–74.CrossRefGoogle Scholar
  63. Shipilov, E.V., Yunov, A.Yu., and Mossur, A.P., Structure of the Barents–Kara continent–ocean transition zone in relation with destructive processes, Geol. Geofiz., 1990, no. 5, pp. 13–19.Google Scholar
  64. Shlyukova, Z.V., Mineralogiya kontaktovykh obrazovanii Khibinskogo massiva (Mineralogy of Contact Rocks of the Khibiny Massif), Moscow: Nauka, 1986.Google Scholar
  65. Sinitsyn, A.V. and Kushev, V.G., Devonian trap formations of the Timan–Kola region, Dokl. Akad. Nauk SSSR, 1968, vol. 178, no. 5, pp. 1168–1170.Google Scholar
  66. Sobolev, A.V., Sobolev, S.V., Kuz’min, D.V., et al., Siberian meimechites: origin and relation to flood basalts and kimberlites, Russ. Geol. Geophys., 2009a, vol. 50, no. 12, pp. 999–1033.CrossRefGoogle Scholar
  67. Sobolev, A.V., Krivolutskaya, N.A., and Kuz’min, D.V., Petrology of the parental melts and mantle sources of Siberian trap magmatism, Petrology, 2009b, vol. 17, no. 3, pp. 253–286.CrossRefGoogle Scholar
  68. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. Spec. Publ., London, 1989, pp. 313–345.Google Scholar
  69. Terekhov, E.N., Baluev, A.S., Shcherbakova, T.F., et al., Age paradoxes of Devonian magmatism of the northeastern part of the Kola Peninsula, Dokl. Earth Sci., 2012, vol. 442, no. 6, pp. 226–234.CrossRefGoogle Scholar
  70. Vereshchagin, V.A., Butakov, G.P., and Arzamastsev, A.A., Petrographic studies of boulders and glaciation boundaries in the Vyatka–Kama region, Vestn. Udmurt. Univ., 1993, no. 3, pp. 73–82.Google Scholar
  71. Veselovskiy, R.V., Arzamastsev, A.A., Demina, L.I., et al., Paleomagnetism, geochronology, and magnetic mineralogy of Devonian dikes from the Kola Alkaline Province (NE Fennoscandian Shield), Izv., Phys. Solid Earth, 2013, vol. 49, no. 4, pp. 82–104.CrossRefGoogle Scholar
  72. Walter, M.J., Sisson, T.W., and Presnall, D.C., A mass proportion method for calculating melting reactions and application to melting of model upper mantle lherzolite, Earth Planet. Sci. Lett., 1995, vol. 135, nos. 1–4, pp. 526–547.Google Scholar
  73. White, R.S. and McKenzie, D., Mantle plumes and flood basalts, J. Geophys. Res., 1995, vol. 100, no. B9, pp. 17543–17586.CrossRefGoogle Scholar
  74. White, W.M., Geochemistry, geology/classes/ Chapters. html. 1997.Google Scholar
  75. White, W.M. and Duncan, R.A., Geochemistry and geochronology of the Society Island: new evidences for deep mantle recycling, Isotope Studies of Crust–Mantle Evolution, Basu, A. and Hart S.R. Eds., Monograph Ser. Washington, DC: AGU, 1995, vol. 95.Google Scholar
  76. Wooden, J.L., Czamanske, G.K., Fedorenko, V.A., et al., Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Norilsk area, Siberia, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 3677–3704.CrossRefGoogle Scholar
  77. Wu, F.Y., Yang, Y.H., Mitchell, R.H., et al., In situ U–Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite, Chem. Geol., 2010, vol. 277, pp. 178–195.CrossRefGoogle Scholar
  78. Zhirov, K.K., Fedotov, Zh.A., Kravchenko, M.P., and Surovtseva, L.N., Manifestation of excess argon in mafic dike intrusions of North Pechenga, Geokhimiya, 1974, no. 12, pp. 1856–1861.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. A. Arzamastsev
    • 1
    • 2
  • R. V. Vesolovskiy
    • 3
    • 4
  • A. V. Travin
    • 5
    • 6
  • D. S. Yudin
    • 5
    • 7
  • B. V. Belyatsky
    • 8
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of GeosciencesSt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Faculty of GeologyMoscow State UniversityMoscowRussia
  4. 4.Shmidt Institute of the Physics of the EarthRussian Academy of SciencesMoscowRussia
  5. 5.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  6. 6.Tomsk State UniversityTomskRussia
  7. 7.Novosibirsk State UniversityNovosibirskRussia
  8. 8.Karpinskii All-Russia Research Institute of GeologySt. PetersburgRussia

Personalised recommendations