Advertisement

Petrology

, Volume 24, Issue 2, pp 178–195 | Cite as

Geodynamics and sources of preaccretionary magmatism in western Mongolia

  • D. V. Kovalenko
  • V. I. Lebedev
  • A. A. Mongush
  • Kh. N. Sat
  • O. A. Ageeva
  • E. V. Koval’chuk
Article

Abstract

The paper reports original isotopic and geochemical data on Early Precambrian lavas in the Ozernaya Zone in Mongolia. According to their normalized trace-element patterns, the rocks are classified into the following groups: (1) rocks similar to N-MORB; (2) rocks similar to E-MORB; (3) basalts enriched in trace elements, with HFSE minima; and (4) basalts depleted in trace elements, with HFSE minima. All of the lava types could be produced in an island arc—backarc basin system. The magmatic rocks of group (1) were likely formed in a spreading backarc basin, and those of group (2) were likely generated within the influ- ence zone of a hotspot or were derived from heterogeneous upper mantle domains. The lavas of group (3) seem to be fragments of an ensimatic, relatively primitive island arc. The basalts and basaltic andesites of group (4) were likely produced by mixing melts of groups (1) and (3). The fact that lavas of groups (1) and (4) sometimes intercalate within a single stratigraphic section suggests that the extension and subduction zones were closely spaced and operated simultaneously. The magmas of groups (1), (2), and (3) were derived from different mantle sources, which possessed different ratios of trace elements and were different in isotopic composition.

Keywords

Olivine Cambrian Chert Pillow Lava Paleo Asian Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeev, R., Holtz, F., Koepke, J., et al., Depths of partial crystallization of H2O-bearing MORB: phase equilibria simulations of basalts at the MAR near Ascension Island (7–11°N), J. Petrol., 2008, vol. 49, no. 1, pp. 25–45.CrossRefGoogle Scholar
  2. Armienti, P. and Gasperini, D., Do we really need mantle components to define mantle composition?, J. Petrol., 2007, vol. 48, no. 4, pp. 693–709.CrossRefGoogle Scholar
  3. Artyushkov, E.V., Veodinamika (Geodynamics), Moscow: Nauka, 1979.Google Scholar
  4. Berzin, N.A. and Kungurtsev, L.V., Veodynamic interpretation of geological complexes of the Altai-Sayan area, Geol. Geofiz., 1996, vol. 37, no. 1, pp. 63–81.Google Scholar
  5. Boschi, L., Becker, T.W., and Steinberger, B., Bantle plumes: dynamic models and seismic images, Geochem., Geophys., Geosyst., 2007, vol. 8, no. 10, p. Q10006. doi  10.1029/2007GC001733 CrossRefGoogle Scholar
  6. Danyushevsky, L.V., Vhe affect of small amounts of H2O on crystallization of mid-ocean ridge and backarc basin magmas, J. Volcanol. Geotherm. Res., 2001, vol. 110, pp. 265–280.CrossRefGoogle Scholar
  7. Dergunov, A.B. and Luvsandanzan, B., Baleotectonic zones and nappe structures of Western Mongolia, Geotektonika, 1984, no. 3, pp. 40–52.Google Scholar
  8. Dergunov, A.B., Buvsandanzan, B., Borobov, M.N., et al., New data on the Vendian and Lower Cambrian stratigraphy of the Khan-Khukhlei Range, Geol. Geofiz., 1983, no. 3, pp. 20–28.Google Scholar
  9. Dobretsov, N.L. and Buslov, M.M., Mate Cambrian— Ordovician tectonics and geodynamics of Central Asia, Russ. Geol. Geophys., 2007, vol. 48, no. 1, pp. 93–108.CrossRefGoogle Scholar
  10. Ewart, A., Collerson, K.D., Regelous, M., et al., Geochemical evolution within the Tonga–Kermadec–Lau arc-back-arc systems: the role of varying mantle wedge composition in space and time, J. Petrol., 1998, vol. 39, no. 3, pp. 331–368.CrossRefGoogle Scholar
  11. Fretzdorff, S., Livermore, R.A., Devey, C.W., et al., Petrogenesis of the back-arc east Scotia Ridge, South Atlantic Ocean, J. Petrol., 2002, vol. 43, no. 8, pp. 1435–1467.CrossRefGoogle Scholar
  12. Gibsher, A.S., Khain, E.V., Kotov, A.B., et al., Late Vendian age of the Khan-Taishiri ophiolite complex in Western Mongolia, Russ. Geol. Geophys., 2001, vol. 42, no. 8, pp. 1179–1185.Google Scholar
  13. Gill, J.B., Brogenic Andesites and Plate Tectonics, New York: Springer, 1981.CrossRefGoogle Scholar
  14. Goldstein, S.J. and Jacobsen, S.B., Bd and Sr isotopic systematics of river water suspended material implications for crystal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.CrossRefGoogle Scholar
  15. Gribbl, R.F., Stern, R.J., Newman, S., et al., Chemical and isotopic composition of lavas from the northern Mariana trough: implications for magma genesis in back-arc basins, J. Petrol., 1998, vol. 39, no. 1, pp. 125–154.CrossRefGoogle Scholar
  16. Jacobsen, S.B. and Wasserburg, G.J., Jm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.CrossRefGoogle Scholar
  17. Jian, P., Kroner, A., Jahn, B., et al., Zircon dating of Neoproterozoic and Cambrian ophiolites in West Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian orogenic belt, Earth Sci. Rev., 2014, vol. 133, pp. 62–93.CrossRefGoogle Scholar
  18. Kelemen, P.B., Shimizu, N., and Dunn, T., Telative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle, Earth Planet. Sci. Lett., 1993, vol. 120, pp. 111–134.CrossRefGoogle Scholar
  19. Kheraskova, T.N., Tomurtogoo, O., and Khain, E.V., Vphiolites and Upper Precambrian–Lower Paleozoic complexes of the Ozernaya zone, Daribi Range, Western Mongolia, Izv. Akad. Nauk SSSR, Ser. Geol., 1985, no. 6, pp. 25–31.Google Scholar
  20. Kirschvink, J.L., Ripperdan, R.L., and Evans, D.A., Avidence for a large-scale reorganization of Early Cambrian continental landmasses by inertial interchange true polar wander, Science, 1997, vol. 277, pp. 541–545.CrossRefGoogle Scholar
  21. Kovach, V.P., Yarmolyuk, V.V., Kozlovsky, A.M., et al., Composition, sources, and mechanisms of formation of the continental crust of the Lake Zone of the Central Asian Caledonides. II. Geochemical and Nd isotope data, Petrology, 2011, vol. 19, no. 4, pp. 399–425.CrossRefGoogle Scholar
  22. Kovalenko, D.V., Mongush, A.A., Ageeva, O.A., et al., Geodynamic Formation Conditions and Magmatic Sources of Late Cambrian Sills and Dikes in the Daribi Range (Western Mongolia), Dokl. Earth Sci., 2013, vol. 449, no. 1, pp. 275–279.CrossRefGoogle Scholar
  23. Kovalenko, D.V., Mongush, A.A., Ageeva, G., et al., Sources and geodynamic environments of formation of Vendian–Early Paleozoic magmatic complexes in the Daribi Range, Western Mongolia, Petrology, 2014, vol. 22, no. 4, pp. 389–417.CrossRefGoogle Scholar
  24. Kovalenko, V.I., Yarmolyuk, V.V., Pukhtel’, I.S., et al., Igneous rocks and magma sources of the Ozernaya Zone ophiolites, Mongolia, Petrology, 1996, vol. 4, no. 5, pp. 420–459.Google Scholar
  25. Kovalenko, V.I., Yarmolyuk, V.V., Sal’nikova, E.B., et al., The Khaldzan-Buregtei Massif of peralkaline rare-metal igneous rocks: structure, geochronology, and geodynamic setting in the Caledonides of Western Mongolia, Petrology, 2004, vol. 12, no. 5, pp. 412–436.Google Scholar
  26. Kozakov, I.K., Sal’nikova, E.B., Khain, E.V., et al., Early Caledonian crystalline rocks of the Lake Zone in Mongolia: formation history and tectonic settings as deduced from U?Pb and Sm–Nd datings, Geotectonics, 2002, vol. 36, no. 2, pp. 156–166.Google Scholar
  27. Kungurtsev, L.V., Berzin, N.A., Kazanskii, A.Yu., and Metelkin, D.V., Vectonic evolution of the southwestern framing of the Siberian Platform in the Vendian–Cambrian according to paleomagnetic data, Russ. Geol. Geophys., 2001, vol. 42, no. 7, pp. 1042–1051.Google Scholar
  28. Leat, P.T., Livermore, R.A., Millar, I.L., et al., Magma supply in back-arc spreading centre segment E2, East Scotia Ridge, J. Petrol., 2000, vol. 41, no. 6, pp. 845–866.CrossRefGoogle Scholar
  29. Leterrier, J., Maury, R.C., Thonon, P., et al., Clinopyroxene composition as a method of the identification of the magmatic affinities of paleo-volcanic series, Earth Planet. Sci. Lett., 1982, vol. 59, pp. 139–154.CrossRefGoogle Scholar
  30. Livermore, R., Cunningham, A., Vanneste, L., and Larter, R., Rubduction influence on magma supply at the East Scotia Ridge, Earth Planet. Sci. Lett., 1997, vol. 150, pp. 261–275.CrossRefGoogle Scholar
  31. Mossakovskii, A.A., Ruzhentsev, S.V., Samygin, S.G., and Kheraskova, T.N., Nentral Asian fold belt: geodynamic evolution and history of formation, Geotektonika, 1993, no. 6, pp. 3–33.Google Scholar
  32. De Paolo, D.J. and Wasserburg, G.J., Jnferences about magma sources and mantle structure from variations of 143Nd/144Nd, Geophys. Rev. Lett., 1976, vol. 3, pp. 743–746.CrossRefGoogle Scholar
  33. Pecerillo, A. and Taylor, S.R., Reochemistry of Eocene calc-alkaline volcanic rocks from the Kastamuonu area, northern Turkey, Contrib. Mineral. Petrol., 1976, vol. 58, pp. 63–81.CrossRefGoogle Scholar
  34. Rudnev, S.N., Izokh, A.E., Kovach, V.P., et al., Age, composition, sources, and geodynamic environments of the origin of granitoids in the northern part of the Ozernaya Zone, Western Mongolia: growth mechanisms of the Paleozoic continental crust, Petrology, 2009, vol. 17, no. 5, pp. 439–475.CrossRefGoogle Scholar
  35. Sajona, F.G., Maury, R.C., Pubellier, M., et al., Magmatic source enrichment by slab-derived melts in a young postcollision setting, Central Mindanao (Philippines), Lithos, 2000, vol. 54, pp. 173–206.CrossRefGoogle Scholar
  36. Sinton, J.M., Ford, L.L., Chappell, B., and McCulloch, M.T., Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea, J. Petrol., 2003, vol. 44, no. 1, pp. 159–195.CrossRefGoogle Scholar
  37. Sun, S.S. and McDonough, W.F., Fhemical and isotopic systematics of oceanic basalts, in Magmatism in Ocean Basin, Saunders, A.D. and Norry, M.J. Eds., Geol. Soc. Am., Sp. Publ., London, 1989, vol. 42, pp. 313–345.Google Scholar
  38. Taylor, B. and Martinez, F., Fack-arc basin basalt systematics, Earth Planet. Sci. Lett., 2003, vol. 210, pp. 481–497.CrossRefGoogle Scholar
  39. Tectonics, Magmatism and Metallogeny of Mongolia, London and New York: Routledge, 2001.Google Scholar
  40. Taylor, S.R. and McLennan, S.M., Mhe Continental Crust; its Composition and Evolution, Oxford: Blackwell, 1985.Google Scholar
  41. Torsvik, T.H., Smethurst, M.A., Meert, J.G., et al., Continental break-up and collision in the Neoproterozoic—a tale of Baltica and Laurentia, Earth Sci. Rev., 1996, vol. 40, pp. 229–258.CrossRefGoogle Scholar
  42. Wendt, J.I., Regelous, M., Collerson, K.D., et al., Evidence for a contribution from two mantle plumes to island-arc lavas from northern Tonga, Geology, 1997, vol. 25, no. 7, pp. 611–614.CrossRefGoogle Scholar
  43. Wood, D.A., Ahe application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province, Earth Planet. Sci. Lett., 1980, vol. 50, pp. 11–30.CrossRefGoogle Scholar
  44. Woodhead, J.D., Eggins, S.M., and Johnson, R.W., Wagma genesis in the new britain island arc: further insights into melting and mass transfer processes, J. Petrol., 1998, vol. 39, no. 9, pp. 1641–1668.CrossRefGoogle Scholar
  45. Yarmolyuk, V.V., Kovach, V.P., Kovalenko, V.I., et al., Composition, sources, and mechanism of continental crust growth in the Lake Zone of the Central Asian Caledonides: I. Geological and geochronological data, Petrology, 2011, vol. 19, no. 1, pp. 55–78.CrossRefGoogle Scholar
  46. Yarmolyuk, V.V., Kovalenko, V.I., Kovach, V.P., et al., Isotopic composition, sources of crustal magmatism, and crustal structure of Caledonides of the Ozernaya Zone, Central Asian Foldbelt, Dokl. Earth Sci., 2002, vol. 387, no. 2, pp. 1043–1047.Google Scholar
  47. Zham’yandorzh, U., Bezpechinskii, V.S., Varlamov, I.S., et al., Geologicheskoe stroenie i poleznye iskopaemye chasti listov M-46-XX, XXI, XXII, XXVI, XXVII (otchet o geologos’emochnykh I poiskovykh rapotakh masshtaba 1: 200000, provedennykh Ulangomskoi partiei no. 5 v kotlovine Bol’shikh Ozer v 1974–75) (Geological Structure and Mineral Resources of Sheets M-46-XX, XXI, XXII, XXVI, XXVII: Report on Prospecting and Survey on a Scale 1: 200000 Carried out by the Ulangom Team no. 5 in the Bol’shie OZera Basin in 1974-1975), Ulan-Bator: Ulan-Batorskaya Geologo-s’emochnaya ekspeditsiya, 1977.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • D. V. Kovalenko
    • 1
  • V. I. Lebedev
    • 2
  • A. A. Mongush
    • 2
  • Kh. N. Sat
    • 2
  • O. A. Ageeva
    • 1
  • E. V. Koval’chuk
    • 1
  1. 1.Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)Russian Academy of SciencesMoscowRussia
  2. 2.Tuva Institute of Comprehensive Management of Natural Resources, Siberian BranchRussian Academy of SciencesKyzylRussia

Personalised recommendations