Petrology

, Volume 23, Issue 2, pp 116–126 | Cite as

Possible serpentine relicts in lunar meteorites

  • S. I. Demidova
  • M. A. Nazarov
  • T. Ntaflos
  • F. Brandstätter
Article
  • 62 Downloads

Abstract

Recent studies of lunar rocks showed that water could be an important component of lunar magmas. However, mineralogical signs of aqueous alteration of lunar minerals have not been found yet. Two peculiar objects were identified in the Dhofar 302 and 961 lunar meteorites. Their compositional features suggest that their formation could be related to serpentine dehydration. These objects consist of olivine-orthopyroxene intergrowths. In the Dhofar 961 object pyroxene lamellae in olivine resemble exsolution features, while its olivine contains up to 0.5 wt % P2O5. Phosphoran olivines have never been observed in lunar rocks. The findings of these objects suggest possible participation of serpenitinization and deserpentinization in lunar petrogenesis. Significant chemical differences of objects from the Dhofar 302 and 961 meteorites indicate that different kind of rocks were subjected to serpentinization. Unlike the Dhofar 302 object, the serpentine precursor of the Dhofar 961 object should be formed in a KREEP-bearing source.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrell, S.O., Charnley, N.R., and Chinner, G.A., Phosphoran olivines from Pine Canyon, Piute Co., Utah, Mineral. Mag., 1998, vol. 62, pp. 265–269.CrossRefGoogle Scholar
  2. Akai, J. and Sekine, T., Shock effect experiments on serpentine and thermal metamorphic conditions in Antarctic carbonaceous chondrite, Proc. NIPR Symp. Antarct. Meteorites, 1994, vol. 7, pp. 101–109.Google Scholar
  3. Barnes, J.J., Franch, I.A., Anand, M., et al., Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using nanoSIMS, Chem. Geol., 2013, vol. 337-338, pp. 48–55.CrossRefGoogle Scholar
  4. Boesenberg, J.S., Ebel, D.S., and Hewins, R.H., An experimental study of phosphoran olivine and its significance in main group pallasites, 35th Lunar Planet. Sci. Conf., 2004, #1366.pdf.Google Scholar
  5. Brearley, A.J. and Jones, R.H., Chondritic meteorites, Rev. Mineral. Planet. Mater., 2003, vol. 36, pp. 3-01–3-370.Google Scholar
  6. Brindley, G.W. and Hayami, R., Mechanism of formation of forsterite and enstatite from serpentine, Mineral. Mag., 1965, vol. 35, pp. 189–195.CrossRefGoogle Scholar
  7. Brunet, F. and Chazot, G., Partitioning of phosphorus between olivine, clinopyroxene, and silicate glass in a spinel lherzolite xenolith from Yemen, Chem. Geol., 2001, vol. 176, pp. 51–72.CrossRefGoogle Scholar
  8. Buseck, P.R., Pallasite meteorites—mineralogy, petrology and geochemistry, Geochim. Cosmochim. Acta, 1977, vol. 41, pp. 711–740.CrossRefGoogle Scholar
  9. Buseck, P.R. and Clark, J., Zaisho—a pallasite containing pyroxene and phosphoran olivine, Mineral. Mag., 1984, vol. 48, pp. 229–235.CrossRefGoogle Scholar
  10. De Hoog, J.C.M., Gall, L., and Cornell, D.H., Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry, Chem. Geol., 2010, vol. 270, pp. 196–215.CrossRefGoogle Scholar
  11. Demidova, S.I., Nazarov, M.A., Kurat, G., et al., New lunar meteorites from Oman: Dhofar 925, 960 and 961, 36th Lunar Planet. Sci. Conf, 2005, #1607.pdf.Google Scholar
  12. Demidova, S.I., Nazarov, M.A., Brandstätter, F., and Ntaflos, T., Mineralogical evidence for the activity of lunar water, 36th Lunar Planet. Sci. Conf., 2014, #1087.pdf.Google Scholar
  13. Frondel, J.W., Lunar Mineralogy (Wiley, New York, 1975).Google Scholar
  14. Frost, B.R., On the stability of sulfides, oxides, and native metals in serpentinite, J. Petrol., 1985, vol. 26, pp. 31–63.CrossRefGoogle Scholar
  15. Goodrich, C.A., Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disco Island, Greenland, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 1115–1126.CrossRefGoogle Scholar
  16. Gualtieri, A.F., Giacobbe, C., and Viti, C., The dehydroxylation of serpentine group minerals, Am. Mineral., 2012, vol. 97, pp. 666–680.CrossRefGoogle Scholar
  17. Hammond, N.P., Nimmo, F., and Korycansky, D., Hydrocode modeling of the South Pole Aitken Basin-forming impact, 40th Lunar Planet. Sci. Conf, 2009, #1455. pdf.Google Scholar
  18. Hauri, E.H., Weinreich, T., Saal, A.E., et al., High preeruptive water contents preserved in lunar melt inclusions, Science, 2011. doi: 10.1126/science.1204626.Google Scholar
  19. Hui, H., Peslier, A.H., Zhang, Y., and Neal, C.R., Water in lunar anorthosites and evidence for a wet early Moon, Nature Geosci., 2013, vol. 6, pp. 177–180.CrossRefGoogle Scholar
  20. Khisina, N.R., Wirth, R., and Nazarov, M.A., Lamellar pyroxene-spinel symplectites in lunar olivine from the Luna 24 regolith, Geochem. Int., 2011, vol. 49, no. 5, pp. 449–458.CrossRefGoogle Scholar
  21. Korotev, R.L., Zeigler, R.A., Jolliff, B.L., et al., Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron composition, Meteorit. Planet. Sci., 2009, vol. 44, pp. 1287–1322.CrossRefGoogle Scholar
  22. Laz’ko, E.E., Laputina, I.P., Sveshnikova, E.V., and Udovkina, N.G., Composition and petrology of Fragment 24182, in Lunnyi grunt iz Morya Krizisov (Regolith from Mare Crisium), Vinogradov, A.P., Ed., Moscow: Nauka, 1980.Google Scholar
  23. Liu, Y., Mosenfelder, J.L., Guan, Y., et al., SIMS analysis of water abundance in nominally anhydrous minerals in lunar basalts, 43rd Lunar Planet. Sci., 2012, #1866. CD-ROM.Google Scholar
  24. Mason, B., Melson, W.G., and Nelen, J., Spinel and hornblende in Apollo 14 fines, 3rd Lunar Sci. Conf., 1972, p. 512.Google Scholar
  25. Mitrofanov, I., Litvak, M., Sanin, A., et al., Testing polar spots of water-rich permafrost on the Moon: LEND observations onboard LRO, J. Geophys. Res., 2012, vol. 117, no. E00H27. doi:10.1029/2011JE003956.Google Scholar
  26. Morris, R.W., Taylor, G.J., Newsom, H.E., and Keil, K., Highly evolved and ultramafic lithologies from Apollo 14 soils, Proc 20th Lunar Planet. Sci., 1990, pp. 61–75.Google Scholar
  27. Nazarov, M.A., Demidova, S.I., Patchen, A., and Taylor, L.A., Dhofar 301, 302 and 303: three new lunar highland meteorites from Oman, 33rd Lunar Planet. Sci. Conf., 2002, #1293.pdf.Google Scholar
  28. Nazarov, M.A., Ntaflos, T., and Brandstätter, F., FeO/Mno ratios of lunar meteorite minerals, 40th Lunar Planet. Sci. Conf., 2009, #1059.pdf.Google Scholar
  29. Nazarov, M.A., Aranovich, L.Ya., Demidova, S.I., et al., Aluminous enstatites of lunar meteorites and deep-seated lunar rocks, Petrology, 2011, vol. 19, no. 1, pp. 13–25.CrossRefGoogle Scholar
  30. O’Hanley, D.S., Chernosky, D.S., and Wicks, F.J., The stability of lizardite and chrysotile, Can. Mineral., 1989, vol. 27, pp. 483–493.Google Scholar
  31. Padron-Navarta, J.A., Lopez Sanchez-Vizcaino V., Hermann J. et al., Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites, Lithos, 2013, vol. 178, pp. 186–196.CrossRefGoogle Scholar
  32. Petaev, M.I., Barsukova, L.D., Lipschutz, M.E., et al., The Divnoe meteorite: petrology, chemistry, oxygen isotopes and origin, Meteoritics, 1994, vol. 29, pp. 182–199.CrossRefGoogle Scholar
  33. Rietmeijer, F.J.M., Nuth, J.A., and Nelson, R.N., Laboratory hydration of condensed magnesiosilica smokes with implications for hydrated silicates in IDPs and comets, Meteorit. Planet. Sci, 2004, vol. 39, pp. 723–746.CrossRefGoogle Scholar
  34. Saal, A.E., Hauri, E.H., Lo, Cascio, M., et al., The volatile content of the lunar volcanic glasses: evidence for the presence of water in the Moon’s interior, Nature, 2008, vol. 454, pp. 192–195.CrossRefGoogle Scholar
  35. Saal, A.E., Hauri, E.H., Van Orman, J.A., and Rutherford, M.C., Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage, Science, 2013, vol. 340, pp. 1317–1320.CrossRefGoogle Scholar
  36. Shearer, C.K., Aaron, P.M., Burger, P.V., et al., Petrogenetic linkages among fO2, isotopic enrichments-depletions and crystallization history in martian basalts: evidence from the distribution of phosphorus and vanadium valance state in olivine megacrysts, 44th Lunar Planet. Sci. Conf., 2013, #2326.pdf.Google Scholar
  37. Shervais, J.W., Taylor, L.A., Laul, J.C., and Smith, M.R., Pristine highland clasts in consortium breccia 14305: petrology and geochemistry, Proc. 20th Lunar Planet. Sci., J. Geophys. Res., 1984, pp. C25–C40.Google Scholar
  38. Tenthorey, E. and Cox, S.F., Reaction-enhanced permeability during serpentinite dehydration, Geology, 2003, vol. 31, pp. 921–924.CrossRefGoogle Scholar
  39. Trittschack, R., Dehydroxylation kinetics of the serpentine group minerals, GeoFocus, 2013, vol. 34.Google Scholar
  40. Trommsdorff, V., Lopez Sanchez-Vizcaino, V., Gomez-Pugnaire, M.T., and Muntener, O., High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain, Contrib. Mineral. Petrol., 1998, vol. 132, pp. 139–148.CrossRefGoogle Scholar
  41. Ulmer, P. and Trommsdorff, V., Serpentine stability to mantle depths and subduction-related magmatism, Science, 1995, vol. 268, pp. 858–861.CrossRefGoogle Scholar
  42. Viti, C., Serpentine minerals discrimination by thermal analysis, Am. Mineral., 2010, vol. 95, pp. 631–638.CrossRefGoogle Scholar
  43. Warren, P.H., Jerde, E.A., and Kallemeyn, G.W., Pristine moon rocks: an alkali anorthosite with coarse augite exsolution from plagioclase, a magnesian harzburgite, and other oddities, Proc. 20th Lunar Planet. Sci., 1990, pp. 31–59.Google Scholar
  44. Warren, P.H. and Wasson, J.T., Effects of pressure on the crystallization of a “chondriric” magma ocean and implications for the bulk composition of the moon, Proc. 10th Lunar Planet. Sci., 1979, pp. 2051–2083.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. I. Demidova
    • 1
  • M. A. Nazarov
    • 1
  • T. Ntaflos
    • 2
  • F. Brandstätter
    • 3
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Department für LithosphärenforschungUniversität WienWienÖsterreich
  3. 3.Naturhistorisches MuseumWienÖsterreich

Personalised recommendations