Advertisement

Petrology

, Volume 22, Issue 6, pp 574–587 | Cite as

Experimental investigations of superliquidus phase separation in phosphorus-rich melts of Li-F granite cupolas

  • N. I. BezmenEmail author
  • P. N. Gorbachev
Article

Abstract

Experiments at a temperature of 800°C and a pressure of H-C-O fluid of 200 MPa under moderately reducing conditions (magnetite stability field) revealed the occurrence of superliquidus nanocluster cryptic and contrasting phase separation of a quartz-feldspar type in Li-F granite melts of the Podlesi cupolas (Czech Republic) with F, P, and H2O contents approaching the natural values. Similar to natural observations, ore components (W and Sn) were accumulated in the experimental samples in melts enriched in P and F.

Keywords

Fluid Inclusion Bohemian Massif Fluid Component Aluminum Saturation Index Hydrogen Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askhabov, A.M., Nano-scaled cluster (quattron) self-organization of the matter and formation of crystalline and noncrystalline materials, Zap. Vseross. Mineral. O-va, 2004, no. 4, pp. 108–123.Google Scholar
  2. Auffan, M., Rose, J., Bottero, J.-V., et al., Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nature Nanotech., 2009, no. 4, pp. 634–641.Google Scholar
  3. Bezmen, N.I., High pressure gas media apparatus for controlling fugacity of hydrogen-bearing fluid system, in Proceedings of 1st Indian-Soviet Workshop on Experimental Mineralogy and Petrology, Gaur, V.K. and Gupta, A.K.. Eds., Delhi: Government of India Publ., 1989. pp. 9–15.Google Scholar
  4. Bezmen, N.I., Superliquidus differentiation of fluid-bearing magmatic melts under reducing conditions as a possible mechanism of formation of layered massifs: experimental investigations, Petrology, 2001, vol. 9, no. 4, pp. 345–361.Google Scholar
  5. Bezmen, N.I. and Elevich, V.Ya., Petrochemical types of the PGE-bearing massifs and their petrogenesis, in International Platinum, Laverov, N.P. and Distler, V.V., Eds., Athens: Theophrastus, 1998.Google Scholar
  6. Bezmen, N.I., Zharikov, V.A., Zavel’skii, V.O., et al., Albite-hydrogen-water system: solubility of fluid components (P = 200 MPa, T = 1200°C), Geokhimiya, 1990a, no. 5, pp. 640–648.Google Scholar
  7. Bezmen, N.I., Zavel’skii, V.O., Dikov, Yu.P., and Epel’baum, M.B., Interaction of albite melt with hydrogen, Dokl. Akad. Nauk SSSR, 1990b, vol. 311, no. 2, pp. 458–452.Google Scholar
  8. Bezmen, N.I., Zharikov, V.A., and Epelbaum, M.B., et al., The system NaAlSi3O8-H2O-H2 (1200°C, 2 kbar): the solubility and interaction mechanism of fluid species with melt, Contrib. Mineral. Petrol., 1991, vol. 109, pp. 89–97.CrossRefGoogle Scholar
  9. Bezmen, N.I., Fed’kin, A.V., and Zaraisky, G.P., Experimental study of phosphorus and fluorine influence on the superliquidus differentiation of granite melts: preliminary data, Exper. Geosci., 1999, vol. 8, no. 1, pp. 49–53.Google Scholar
  10. Bezmen, N.I., Zharikov, V.A., Zavel’skii, V.O., and Kalinichev, A.G., Melting of alkali aluminosilicate systems under hydrogen-water fluid pressure, P tot = 2 kbar, Petrology, 2005, vol. 13, no. 4, pp. 407–426.Google Scholar
  11. Bezmen, N.I., Zavel’skii, V.O., and Salova, T.P., Solubility of water-hydrogen fluid in haplogranite, albite, and sodium disilicate melts, Petrology, 2011, vol. 19, no. 2, pp. 183–197.CrossRefGoogle Scholar
  12. Breiter, K., Phosphorus- and fluorine-rich granite system at Podlesi, in Genetic Significance of Phosphorus in Fractionated Granites. Excursion Guide, K. Breiter, Ed., Prague: Czech Geol. Surv., 1998, pp. 59–75.Google Scholar
  13. Breiter, K., From explosive breccia to unidirectional solidification textures: magmatic evolution of a phosphorus- and fluorine-rich granite system (Podlesi, Krušné Hory Mts., Czech Republic), Bull. Czech Geol. Surv., 2002, vol. 77, no. 2, pp. 67–92.Google Scholar
  14. Breiter, K., Seltmann, R., and Thomas, R., The phosphorus-rich rare metal granite system of Podlesi, Czech Republic, Proceeding of the Fourth Biennial SGA Meeting, Turku (Finland), H. Papunen, Ed., Rotterdam: A.A. Balkema, 1997, pp. 833–835.Google Scholar
  15. Bums, P., Nanoscale uranium-based cage clusters inspired by uranium mineralogy, Mineral. Mag., 2011, vol. 75, pp. 1–25.CrossRefGoogle Scholar
  16. Bums, P., Grice, J.D., and Hawthorne, F.C., Borate minerals. I. Polyhedral clusters and fundamental building units, Can. Mineral., 1995, vol. 33, pp. 1131–1151.Google Scholar
  17. Chou, I.-M., Permeability of precious metals to hydrogen at 2 kb total pressure and elevated temperatures, Am. J. Sci., 1986, vol. 286, pp. 638–658.CrossRefGoogle Scholar
  18. Cohen, M.L. and Knight, W.D., The physics of metal clusters, Phys. Today, 1990, vol. 12, pp. 42–50.CrossRefGoogle Scholar
  19. Fed’kin, A., Seltmann, R., Rhede, D., et al., Reaction of a granitic melt with fluorine and phosphorus enriched fluids at H-O-C conditions, Mineral Deposits: Processes to Processing, Stanley, C.J. et al., Eds., Rotterdam: A.A. Balkema, 1999, pp. 349–352.Google Scholar
  20. Fed’kin, A., Seltmann, R., Bezmen, N., and Zaraisky, G., Experimental testing of line rocks in Li-F granites: evidence from superliquidus experiments with F and P added, Bull. Czech Geol. Surv, 2002, vol. 77, no. 2, pp. 113–125.Google Scholar
  21. Gebauer, D., Völkel, A., and Cölfen, H., Stable prenucleation calcium carbonate clusters, Science, 2008, vol. 322, pp. 1819–1822.CrossRefGoogle Scholar
  22. Glansdorff, P. and Prigogine, I., Thermodynamic Theory of Structure, Stability, and Fluctuation, New York: Wiley, 1971.Google Scholar
  23. Helmy, H., Ballhaus, C., Fonseca, R., et al., Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts, Nature Communicat., 2013, no. 4, Article number 2405.Google Scholar
  24. Hochella, M.F., Lower, S.K., and Maurice, P.A., Nanominerals, mineral nanoparticles and Earth systems, Science, 2008, vol. 319, pp. 1631–1635.CrossRefGoogle Scholar
  25. Manning, D.A., The effect of fluorine on liquidus phase relationship in the system Qz-Ab-Or with excess water at 1 kb, Contrib. Mineral. Petrol., 1981, vol. 113, pp. 450–465.Google Scholar
  26. Persikov, E.S. and Epel’baum, M.B., Device for study of viscosity and density of magmatic melts at high pressures, in Experiment and Technique of High Gas and Solid-Phase Pressures, Yu.A. Litvin, Ed., Moscow: Nauka, 1978, pp. 94–99.Google Scholar
  27. Porai-Koshits, E.A., Glass structure: geometrical, kinetic, and dynamic aspects, in Glass-Like State Leningrad: Nauka, 1988, pp. 23–29.Google Scholar
  28. Schmid, G., Developments in transition metal cluster chemistry: the way to large clusters, Structure and Bonding, 1985, vol. 62, pp. 52–85.Google Scholar
  29. Shaw, H.R., Hydrogen-water vapor mixture: control of hydrothermal atmosphere by hydrogen osmosis, Science, 1963, vol. 139, pp. 1220–1222.CrossRefGoogle Scholar
  30. Shmulovich, K.I., Masur, V.A., Kalinichev, A.G., and Khodorevskaya, L.I., P-V-t and component activity-concentration relations for systems of H2O-nonpolar gas type, Geochem. Int., 1980, vol. 17, pp. 18–31.Google Scholar
  31. Shmulovich, K.I., Shmonov, V.M., and Zharikov, V.A., The thermodynamics of supercritical fluid systems, Adv. Phys. Geochem., Saxena, S.K., Ed., 1982, vol. 2, pp. 173–190.CrossRefGoogle Scholar
  32. Stace, T., How small is a solid?, Nature, 1988, vol. 331, pp. 116–117.CrossRefGoogle Scholar
  33. Thomas, R., Estimation of the viscosity and the water content of silicate melts from inclusion data, Eur. J. Mineral., 1994, vol. 6, pp. 511–535.CrossRefGoogle Scholar
  34. Thomas, R. and Webster, J., Strong tin enrichment in a pegmatite-forming melt, Miner. Deposita, 2000, vol. 35, pp. 570–582.CrossRefGoogle Scholar
  35. Thomas, R., Förster, H.-J., Rickers, K., and Webster, J., Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study, Contrib. Mineral. Petrol., 2005, vol. 148, pp. 582–601.CrossRefGoogle Scholar
  36. Tredoux, M., Lindsay, N.M., Davies, G., and McDonald, I., The fractionation of platinum-group elements in magmatic systems, with the suggesting of a novel causal mechanism, S. Afr. J. Geol., 1995, vol. 98, pp. 157–167.Google Scholar
  37. Vatolin, N.A. and Pastukhov, E.A., Diffraction Structural Studies of High-Temperature Melts, Moscow: Nauka, 1980.Google Scholar
  38. Webster, J., Thomas, R., Förster, H.-J., et al., Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany, Miner. Deposita, 2004, vol. 39, pp. 452–722.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovka, Moscow obl.Russia

Personalised recommendations