, Volume 22, Issue 5, pp 462–479 | Cite as

U-Pb geochronology and Sr-Nd isotopic systematics of minerals from the ultrabasic-alkaline massifs of the Kola province

  • A. A. Arzamastsev
  • Fu-Yuan Wu


This paper reports the results of U-Pb geochronological and Sr-Nd isotopic geochemical investigations (LA-ICP-MS) for perovskite, apatite, titanite, and calcite from the ultrabasic-alkaline rocks of the Paleozoic Kola alkaline province of the Fennoscandian Shield. Based on the obtained data, two main stages were distinguished in the history of Paleozoic intrusions in this province: (1) formation of ultrabasic-alkaline series of the Kovdor, Afrikanda, Turiy Mys, Ozernaya Varaka, Lesnaya Varaka, and other massifs, as well as the ultrabasic-alkaline series of the Khibiny and Lovozero massifs (385–375 Ma) and (2) formation of agpaitic syenites in the Khibiny and Lovozero calderas (375–360 Ma) and related apatite-nepheline deposits (370 Ma). The Sr-Nd isotopic geochemical investigations of perovskite, apatite, and titanite, which are the main hosts for the rare earth elements and Sr in ultrabasic-alkaline rocks, showed that variations in the Sr and Nd isotopic characteristics of these rocks are related to a large extent to crustal contamination during the ascent of their parental melts toward the surface and crystallization in magma chambers. As a result, the Sr and Nd isotopic characteristics of late minerals (apatite and titanite) do not reflect the initial Sr and Nd isotopic ratios of the primary magma. Initial ratios in the primary mantle melts are most closely approximated by the isotopic characteristics of phases crystallizing during early stages (e.g., perovskite).


Perovskite 206Pb Titanite Nepheline Kola Peninsula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amelin, Ju.V. and Zaitsev, A.N., Precise geochronology of phoscorites and carbonatites: the critical role of U-series disequilibrium in age interpretations, Geochim. Cosmochim. Acta, 2002, vol. 66, no. 13, pp. 2399–2419.CrossRefGoogle Scholar
  2. Anders, E. and Grevesse, N., Abundances of the elements: meteoritic and solar, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 197–214.CrossRefGoogle Scholar
  3. Arzamastsev, A.A., Ivanova, T.N., and Korobeinikov, A.N., Petrologiya iiolit-urtitov Khibin i zakonomernosti razmeshcheniya v nikh zalezhei apatita (Petrology of the Khibina Ijolite-Urtites and the Distribution of Apatite Deposits), Leningrad: Nauka, 1987.Google Scholar
  4. Arzamastsev, A.A., Arzamastseva, L.V., Glaznev, V.N., and Raevskii, A.B., Petrologic-geophysical model for the structure and composition of deep levels of the Khibina and Lovozero complexes, Kola Peninsula, Petrology, 1998, vol. 6, no. 5, pp. 434–450.Google Scholar
  5. Arzamastsev, A.A., Bayanova, T.B., Arzamastseva, L.V., et al., Initial magmatism related to the Paleozoic tectonomagmatic reactivation in the Northeastern Baltic Shield: the age and geochemistry of the Kurga Massif, Kola Peninsula, Geochem. Int., 1999, vol. 37, no. 11, pp. 1025–1035.Google Scholar
  6. Arzamastsev, A.A., Arzamastseva, L.V., Travin, A.V., et al., Duration of formation of magmatic system of polyphase Paleozoic alkaline complexes of the Central Kola: U-Pb, Rb-Sr, Ar-Ar data, Dokl. Earth Sci., 2007, vol. 413A, no. 3, pp. 432–436.CrossRefGoogle Scholar
  7. Arzamastsev, A.A., Fedotov, Zh.A., and Arzamastseva, L.V., Daikovyi magmatizm severo-vostochnoi chasti Baltiiskogo shchita (Dike Magmatism in the Northeastern Baltic Shield), St. Petersburg: Nauka, 2009.Google Scholar
  8. Arzamastsev, A.A., Fedotov, Zh.A., Arzamastseva, L.V., and Travin, A.V., Paleozoic tholeiite magmatism in the Kola Igneous Province: spatial distribution age, relations with alkaline magmatism, Dokl. Earth Sci., 2010, vol. 430, no. 2, pp. 205–209.CrossRefGoogle Scholar
  9. Arzamastsev, A.A. and Petrovsky, M.N., Alkaline volcanism in the Kola Peninsula, Russia: Paleozoic Khibina, Lovozero and Kontozero calderas, Proceed. MSTU, 2012, vol. 15, no. 2, pp. 277–299.Google Scholar
  10. Arzamastsev, A.A. and Arzamastseva, L.V., Geochemical indicators of the evolution of the ultrabasic-alkaline series of Paleozoic massifs of the Fennoscandian Shield, Petrology, 2013, vol. 21, no. 3, pp. 249–279.CrossRefGoogle Scholar
  11. Baluev, A.S., Zhuravlev, V.A., Terekhov, E.N., and Przhiyalgovskii, E.S., Tektonika Belogo morya i prilegayushchikh territorii (Ob”yasnitel’naya zapiska k “Tektonicheskoi karte Belogo morya i prilegayushchikh territorii” masshtaba 1: 1500000) (Tectonics of the White Sea and Adjacent Territories: Explanatory Notes to the “Tectonic Map of the White Sea and Adjacent Territories” on a Scale 1: 1500000 T), Moscow: GEOS, 2012.Google Scholar
  12. Bayanova, T.B., Vozrast repernykh geologicheskikh kompleksov Kol’skogo regiona i dlitel’nost’ protsessov magmatizma (Age of the Reference Geologial Complexes of the Kola Region and Duration of Magmatic Processes), St. Petersburg: Nauka, 2004.Google Scholar
  13. Downes, H., Balaganskaya, E.G., Beard, A., et al., Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola alkaline province: a review, Lithos, 2005, vol. 85, pp. 48–75.CrossRefGoogle Scholar
  14. Dunworth, E.A. and Bell, K., The Turiy Massif, Kola Peninsula, Russia: isotopic and geochemical evidence for multi-source evolution, J. Petrol., 2001, vol. 42, pp. 377–405.CrossRefGoogle Scholar
  15. Galakhov, A.V., Petrologiya Khibinskogo shchelochnogo massiva (Petrology of the Khibina Alkaline Massif), Leningrad: Nauka, 1975.Google Scholar
  16. Harmer, R.E., The petrogenetic association of carbonatite and alkaline magmatism: constraints from the Spitskop Complex, South Africa, J. Petrol., 1999, vol. 40, no. 4, pp. 525–548.CrossRefGoogle Scholar
  17. Kogarko, L.N., Kramm, U., Blaksland, A., et al., Age and origin of the alkaline rocks of the Khibina Pluton, Dokl. Akad. Nauk SSSR, 1981, vol. 260, no. 4, pp. 1001–1004.Google Scholar
  18. Kogarko, L.N., Kramm, U., and Grauert, B., New data on the age and genesis of the alkaline rocks of the Lovozero Massif (Rb and Sr isotopy), Dokl. Akad. Nauk SSSR, 1983, vol. 268, no. 4, pp. 970–972.Google Scholar
  19. Kramm, U., Kogarko, L.N., Kononova, V.A., and Vartiainen, H., The Kola alkaline province of the CIS and Finland: precise Rb-Sr ages define 380–360 age range for all magmatism, Lithos, 1993, vol. 30, pp. 33–44.CrossRefGoogle Scholar
  20. Kramm, U. and Kogarko, L.N., Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola alkaline province, Russia, Lithos, 1994, vol. 32, pp. 225–242.CrossRefGoogle Scholar
  21. Kukharenko, A.A., Bulakh, A.G., Il’inskii, G.A., et al., Metallogenic features of alkaline formations of the eastern Baltic Shield, in Tr. Leningr. ob-va estestvoispytatelei, Leningrad: Nedra, 1971, vol. 72, issue 2.Google Scholar
  22. Lee, M.J., Lee, J.I., Hur, S.D., et al., Sr-Nd-Pb isotopic compositions of the Kovdor phoscorite-carbonatite complex, Kola Peninsula, NW Russia, Lithos, 2006, vol. 91, pp. 250–261.CrossRefGoogle Scholar
  23. Li, Q.L., Li, X.H., Liu, Y., et al., Precise U-Pb and Th-Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry, Chem. Geol., 2010, vol. 269, pp. 396–405.CrossRefGoogle Scholar
  24. Matukov, D.I., Lepekhina, E.N., Bagdasarov, E.A., et al., SHRIMP-II U-Pb dating of perovskite from ultramafic alkaline intrusion, Geochim. Cosmochim. Acta, 2006, vol. 70, no. 18.Google Scholar
  25. Mitchell, R.H., Carbonatites and carbonatites and carbonatites, Can. Mineral., 2005, vol. 43, pp. 2049–2068.CrossRefGoogle Scholar
  26. Mitrofanov, F.P., Modern problems and some solutions of the Precambrian geology of cratons, Litosfera, 2001, no. 1, pp. 5–14.Google Scholar
  27. Reguir, E.P., Camacho, A., Yang, P., et al., Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS, Mineral. Petrol, 2010, vol. 100, pp. 95–103.CrossRefGoogle Scholar
  28. Rukhlov, A.S. and Bell, K., Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution, Mineral. Petrol., 2010, vol. 98, pp. 11–54.CrossRefGoogle Scholar
  29. Samsonov, A.V., Berzin, R.G., Zamozhnyaya, N.G., et al., Growth of the Early Precambrian crust in the northwestern Karelia, Baltic Shield: results of geological, petrological, and deep seismic (profile 4V) studies, in Glubinnoe stroenie i evolyutsiya zemnoi kory vostochnoi chasti Fennoskandinavskogo shchita: profil’ Kem’-Kalevala (Deep Structure and Evolution of the Earth’s Crust of the Eastern Fennoscandian Shield), Petrozavodsk: KarNTs RAN, 2001, pp. 109–143.Google Scholar
  30. Sindern, S., Zaitsev, A.N., Demény, A., et al., Mineralogy and geochemistry of silicate dyke rocks associated with carbonatites from the Khibina Complex (Kola, Russia)—isotope constraints on genesis and small-scale mantle sources, Mineral. Petrol., 2004, vol. 80, pp. 215–239.CrossRefGoogle Scholar
  31. Slabunov, A.I., Geologiya i geodinamika arkheiskikh podvizhnykh poyasov (na primere Belomorskoi provintsii Fennoskandinavskogo shchita) (Geology and Geodynamics of the Archean Mobile Belts: Evidence for the Belomorian Province of the Fennoscandian Schield), Petrozavodsk: KNTs RAN, 2008.Google Scholar
  32. Veksler, I.V., Fedorchuk, Y.M., and Nielsen, T.F.D., Phase equilibria in the silica-undersaturated part of the KAlSiO4-Mg2SiO4-Ca2SiO4-SiO2-F system at 1 atm and the larnite-normative trend of melt evolution, Contrib. Mineral. Petrol., 1998, vol. 131, no. 4, pp. 347–363.CrossRefGoogle Scholar
  33. Verhulst, A., Balaganskaya, E., Kirnarsky, Y., and Demaiffe, D., Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia), Lithos, 2000, vol. 51, pp. 1–25.CrossRefGoogle Scholar
  34. Woolley, A.R. and Kjarsgaard, B.A., Paragenetic types of carbonatite as indicated by the diversity and relative abundances of associated silicate rocks: evidence from a global database, Can. Mineral., 2008, vol. 46, pp. 741–752.CrossRefGoogle Scholar
  35. Wu, F.Y., Yang, Y.H., Xie, L.W., et al., Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology, Chem. Geol., 2006, vol. 234, pp. 105–126.CrossRefGoogle Scholar
  36. Wu, F.Y., Yang, Y.H., Marks, M.A.W., et al., In situ U-Pb, Sr, Nd, and Hf isotopic analysis of eudialyte by La-(MC)-ICP-MS, Chem. Geol., 2010a, vol. 273, pp. 8–34.CrossRefGoogle Scholar
  37. Wu, F.Y., Yang, Y.H., Mitchell, R.H., et al., In situ U-Pb age determination and Nd isotopic analyses of perovskites from kimberlites in Southern Africa and Somerset Island, Canada, Lithos, 2010b, vol. 115, pp. 205–222.CrossRefGoogle Scholar
  38. Wu, F.Y., Yang, Y.H., Mitchell, R.H., et al., In situ U-Pb and Nd-Hf-(Sr) isotopic investigations of zirconolite and calzirtite, Chem. Geol., 2010c, vol. 277, pp. 178–195.CrossRefGoogle Scholar
  39. Xie, L.W., Zhang, Y.B., Zhang, H.H., et al., In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite, Chin. Sci. Bull., 2008, vol. 53, pp. 1565–1573.CrossRefGoogle Scholar
  40. Yang, Y.H., Sun, J.F., Xie, L.W., et al., In situ Nd isotopic measurements of geological samples by laser ablation, Chin. Sci. Bull., 2008, vol. 53, pp. 1062–1070.CrossRefGoogle Scholar
  41. Yang, Y.H., Wu, F.Y., Wilde, S.A., et al., In situ perovskite Sr-Nd isotopic constraints on petrogenesis of the Mengyin kimberlites in the North China Craton, Chem. Geol., 2009, vol. 264, pp. 24–42.CrossRefGoogle Scholar
  42. Zaitsev, A.N. and Bell, K., Sr and Nd isotope data of apatite, calcite and dolomite as indicators of the source and the relationships of phoscorites and carbonatites from the Kovdor Massif, Kola Peninsula, Russia, Contrib. Mineral. Petrol., 1995, vol. 121, pp. 324–335.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations