, Volume 22, Issue 3, pp 293–309 | Cite as

Formation and properties of hydrosilicate liquids in the systems Na2O-Al2O3-SiO2-H2O and granite-Na2O-SiO2-H2O at 600°C and 1.5 kbar

  • V. G. ThomasEmail author
  • S. Z. Smirnov
  • O. A. Kozmenko
  • V. A. Drebushchak
  • V. S. Kamenetsky


In order to determine the mechanisms of formation and properties of natural hydrosilicate liquids (HSLs), which are formed during the transition from magmatic to hydrothermal mineral formation in granitic pegmatites and rare-metal granites, the formation of HSLs was experimentally studied in the Na2O-SiO2-H2O, Na2O-Al2O3-SiO2-H2O, and Na2O-K2O-Li2O-Al2O3-SiO2-H2O systems at 600°C and 1.5 kbar. It was shown that the sequential extension of composition does not suppress HSL formation in the systems and expands the stability field of this phase. However, HSLs formed in extended chemical systems have different structure and properties: the addition of alumina induces some compression of the structure of the silicate framework of HSLs, which results in a decrease in water content in this phase and probably hinders the reversibility of its dehydration. It was demonstrated that HSL can be formed by the coagulation of silica present in a silica-oversaturated alkaline aqueous fluid. It was supposed that the HSL formed during this process has a finely dispersed structure. It was argued that anomalous enrichment in some elements in natural HSLs can be due to their sorption by the extensively developed surface of HSL at the moment of its formation.


Nepheline Aqueous Fluid Analcime Spodumene Back Scatter Electron Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anfilogov, V.N., Abramov, V.A., Kovalenko, V.I., and Ogorodova, V.Ya., Phase relations in the agpaitic field of the Na2O-K2O-Al2O3-SiO2-H2O system at a pressure of 1000 kg/cm2, Dokl. Akad. Nauk SSSR, 1972, vol. 294, no. 4, pp. 944–947.Google Scholar
  2. Bailey, D.K. and Macdonald, R., Alkali-feldspar fractionation trends and the derivation of peralkaline liquids, Am. J. Sci., 1969, vol. 267, no. 2, pp. 242–248.CrossRefGoogle Scholar
  3. Bakumenko, I.T. and Konovalenko, S.I., Specific features of the formation of miarolitic pegmatites and their position among granite pegmatites, in Termobarogeokhimicheskie issledovaniya protsessov mineraloobrazovaniya (Studies of Inclusions in Minerals with Applications to Mineral Formation), Sobolev, N.V. and Bakumenko, I.T., Eds., Novosibirsk: Nauka, 1988, pp. 123–135.Google Scholar
  4. Balitsky, V.S., Kurashige, M., Balitskaya, L.V., and Iwasaki, W., Study of quartz solubility and “heavy” phase formation under industrial synthetic quartz growth conditions, Joint ISHR&ICSTR, Kochi: Kochi University, 2000, pp. 318–321.Google Scholar
  5. Butuzov, V.P. and Bryatov, L.V., Study of phase equilibria in part of the H2O-SiO2-Na2CO3 system at high temperaures and pressures, Kristallografiya, 1957, vol. 204, no. 4, pp. 944–947.Google Scholar
  6. Bykov, V.N., Anfilogov, V.N., and Kuznetsov, S.V., Structures of aluminosilicate melts: evidence from Raman scattering spectra, Geochem. Int., 1996, vol. 34, pp. 296–302.Google Scholar
  7. Deniskina, N.D., Kalinin, D.V., and Kazantseva, L.K., Blagorodnye opaly: prirodnye i sinteticheskie (Precious Opals: Natural and Synthetic), Novosibirsk: Nauka, 1987.Google Scholar
  8. Frolov, Yu.G., Kurs kolloidnoi khimii. Poverkhnostnye yavleniya i dispersnye sistemy (A Course of Colloid Chemistry. Surface Phenomena and Dispersed Systems), Moscow: Khimiya, 1989.Google Scholar
  9. Ganeev, I.G. and Rumyantsev, V.N., Nature of immiscible splitting in the H2O-SiO2-NaOH system at elevated pressures and temperatures, Neorg. Mater., 1971, vol. 7, no. 12, pp. 2191–2194.Google Scholar
  10. Gershuni, G.Z. and Zhukhovitskii, E.M., Konvektivnaya ustoichivost’ neszhimaemoi zhidkosti (Convective Stability of Incompressible Liquid), Moscow: Nauka, 1972.Google Scholar
  11. Glyuk, D.S. and Trufanova, L.G., Melting in the granite-H2O system with addition of HF, HCl, fluorides, chlorides, and hydroxides of lithium, sodium, and potassium at a pressure 1000 kg/cm2, Geokhimiya, 1977, vol. 7, pp. 1003–1011.Google Scholar
  12. Hack, A.C., Hermann, J., and Mavrogenes, J.A., Mineral solubility and hydrous melting relations in the deep Earth: analysis of some binary A-H2O system pressure-temperature-composition topologies, Am. J. Sci., 2007, vol. 307, no. 5, pp. 833–855.CrossRefGoogle Scholar
  13. Hacker, M. and Zevin, L.S., Rentgenovskaya difraktometriya (X-Ray Diffractometry), Moscow: Fizmat, 1963.Google Scholar
  14. Iler, R.K., The Chemistry of Silica, New York: Wiley, 1979.Google Scholar
  15. Kennedy, G.C., Wasserburg, G.J., Heard, H.C., and Newton, R.C., The upper three-phase region in the system SiO2-H2O, Am. J. Sci., 1962, vol. 260, pp. 501–521.CrossRefGoogle Scholar
  16. Korotaev, M.Yu. and Kravchuk, K.G., Geterofaznost’ gidrotermal’nykh rastvorov v usloviyakh endogennogo mineraloobrazovaniya (Heterophase State of Hydrothermal Solutions under Conditions of Endogenous Mineral Formation), Chernogolovka: IEM AN SSSR, 1985.Google Scholar
  17. Kotel’nikova, Z.A. and Kotel’nikov, A.R., Experimental study of heterogeneous fluid equilibria in silicate-saltwater systems, Geol. Ore Dep., 2010, vol. 52, no. 2, pp. 171–185.Google Scholar
  18. Kravchuk, K.G. and Valyashko, V.M., Equilibrium diagrams in the Na2O-SiO2-H2O system, in Metody esperimental’nogo issledovaniya gidrotermal’nykh ravnovesii (Methods of the Experimental Study of Hydrothermal Equilibria), Godovikov, A.A., Ed., Novosibirsk: Nauka, 1979, pp. 105–117.Google Scholar
  19. Laudise, R. and Parker, R., The Growth of Single Crystals, New Jersey: Prentice-Hall, 1974.Google Scholar
  20. Morey, G.W. and Fenner, C.N., The ternary system H2O-K2SiO3-SiO2, J. Am. Chem. Soc., 1917, vol. 39, pp. 1173–1229.CrossRefGoogle Scholar
  21. Mustart, D.A., Phase Relations in the Peralkaline Portion of the System Na 2 O-Al 2 O 3-SiO 2-H 2 O, PhD/Cand. Sci. (Chem.) Dissertation, Stanford: Stanford University, 1972.Google Scholar
  22. Peretyazhko, I.S. and Savina, E.A., Fluid and magmatic processes in the formation of the Ary-Bulak ongonite massif, eastern Transbaikalia, Russ. Geol. Geophys., 2010, vol. 51, no. 10, pp. 1110–1125.CrossRefGoogle Scholar
  23. Peretyazhko, I.S., Smirnov, S.Z., Thomas, V.G., and Zagorsky, V.Y., Gels and melt-like gels in endogenous mineral formation, in Metallogeny of the Pacific North West: Tectonics, Magmatism and Metallogeny of Active Continental Margins, Khanchuk, A.I., Gonevchuk, G.A., Mitrokhin, A.N., Simanenko, L.F., Cook, N.J., and Seltmann, R., Eds., Vladivostok: Dal’nauka, 2004a, pp. 306–309.Google Scholar
  24. Peretyazhko, I.S., Zagorsky, V.Y., Smirnov, S.Z., and Mikhailov, M.Y., Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan Field, Central Transbaikalia, Russia), Chem. Geol., 2004b, vol. 210, nos. 1–4, pp. 91–111.CrossRefGoogle Scholar
  25. Petrov, V.P., On the character of thermal transformations in volcanic glass, in Perlity (Perlites), Nasedkin, V.V. and Petrov, V.P., Eds., Moscow: Nauka, 1981, pp. 166–176.Google Scholar
  26. Ravich, M.I., Vodno-solevye sistemy pri povyshennykh temperaturakh i davleniyakh (Aqueous Salt Systems at Elevated Temperatures and Pressures), Moscow: Nauka, 1974.Google Scholar
  27. Rickers, K., Thomas, R., and Heinrich, W., The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: a SXRF study of melt and fluid inclusions, Mineral. Deposita, 2006, vol. 41, no. 3, pp. 229–245.CrossRefGoogle Scholar
  28. Rowe, J.J., Fournier, R.O., and Morey, G.W., System water-sodium oxide-silicon dioxide at 200, 250 and 300°C, Inorg. Chem., 1967, vol. 6, pp. 1183–1188.CrossRefGoogle Scholar
  29. Rumyantsev, V.N., Structure of crystal-forming media and hydrothermal growth of quartz in aqueous NaOH solutions, in IV Mezhdunarodnaya konferentsiya “Kristally: rost, svoistva, real’naya struktura i primenenie” (4th International Conference “Crystals: Growth, Properties, Real Structure, and Application”), Aleksandrov: VNIISIMS, 1999, vol. 1, pp. 16–38.Google Scholar
  30. Shatsky, V.S., Sitnikova, E.S., Koz’menko, O.A., Palessky, S.V., Nikolaeva, I.V., and Zayachkovsky, A.A., Behavior of incompatible elements during ultrahigh-pressure metamorphism (by the example of rocks of the Kokchetav Massif), Russ. Geol. Geophys., 2006, vol. 47, no. 4, pp. 471–481.Google Scholar
  31. Smirnov, S.Z., Peretyazhko, I.S., Zagorskii, V.E., and Mikhailov, M.Yu., Inclusions of unusual late magmatic melts in quartz from the Oktyabr’skaya Pegmatite Vein, Malkhan Field (Central Transbaikal Region), Dokl. Earth Sci., 2003, vol. 392, no. 7, pp. 999–1003.Google Scholar
  32. Smirnov, S.Z., Thomas, V.G., Demin, S.P., and Drebushchak, V.A., Experimental study of boron solubility and speciation in the Na2O-B2O3-SiO2-H2O system, Chem. Geol., 2005, vol. 223, nos. 1–3, pp. 16–34.CrossRefGoogle Scholar
  33. Smirnov, S.Z., Thomas, V.G., Kamenetsky, V.S., Kozmenko, O.A., and Large, R.R., Hydrosilicate liquids in the system Na2O-SiO2-H2O with NaF, NaCl and Ta: evaluation of their role in ore and mineral formation at high T and P, Petrology, 2012, vol. 20, no. 3, pp. 271–285.CrossRefGoogle Scholar
  34. Thomas, R., Determination of water contents of granite melt inclusions by confocal laser Raman microprobe spectroscopy, Am. Mineral., 2000, vol. 85, nos. 5–6, pp. 868–872.Google Scholar
  35. Thomas, R., Forster, H.-J., Rickers, K., and Webster, J.D., Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study, Contrib. Mineral. Petrol., 2005, vol. 148, no. 5, pp. 582–601.CrossRefGoogle Scholar
  36. Thomas, R., Webster, J.D., Rhede, D., Seifert, W., Rickers, K., Forster, H.J., Heinrich, W., and Davidson, P., The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals, Lithos, 2006, vol. 91, nos. 1–4, pp. 137–149.CrossRefGoogle Scholar
  37. Tuttle, O.F., Residual solutions formed by crystallizing water-granite liquid, in Physicochemical Problems of the Formation of Rocks and Ores, Sokolov, G.A., Ed., Moscow: AN SSSR, 1961, vol. 1, pp. 647–653.Google Scholar
  38. Valyashko, V.M., Fazovye ravnovesiya i svoistva gidrotermal’nykh rastvorov (Phase Equilibria and Properties of Hydrothermal Solutions), Moscow: Nauka, 1990.Google Scholar
  39. Veksler, I.V., Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies, Chem. Geol., 2004, vol. 210, nos. 1–4, pp. 7–31.CrossRefGoogle Scholar
  40. Vilars, P., Cenzual, K., Daams, J., Gladyshevskii, R., Shcherban, O., Dubenskyy, V., Melnichenko-Koblyuk, N., Pavlyuk, O., Savysyuk, I., Stoyko, S., and Landolt-Börnstein, L.S., Group III Condensed Matter, Berlin, Heidelberg: Springer, 2007.Google Scholar
  41. Wilkinson, J.J., Nolan, J., and Rankin, A.H., Silicothermal fluid: a novel medium for mass transport in the lithosphere, Geology, 1996, vol. 24, no. 12, pp. 1059–1062.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. G. Thomas
    • 1
    Email author
  • S. Z. Smirnov
    • 1
    • 2
    • 3
  • O. A. Kozmenko
    • 1
  • V. A. Drebushchak
    • 1
    • 2
  • V. S. Kamenetsky
    • 4
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Tomsk State UniversityTomskRussia
  4. 4.ARC Centre of Excellence in Ore DepositsUniversity of TasmaniaHobartAustralia

Personalised recommendations