, Volume 22, Issue 2, pp 184–204 | Cite as

Rb-Sr age of metasomatism and ore formation in the low-temperature shear zones of the Fenno-Karelian CRATON, Baltic Shield

  • V. A. GlebovitskiiEmail author
  • S. A. Bushmin
  • B. V. Belyatsky
  • E. S. Bogomolov
  • A. P. Borozdin
  • E. V. Savva
  • Yu. M. Lebedeva


Manifestations of the main types of metasomatites (beresite, propylite, listwaenite, aceite, and gumbeite) were identified in the shear zones of the Fenno-Karelian craton on the basis of the previously proposed systematics of metasomatic facies. These metasomatites were formed in shear stress environments, which determined their morphological features, in particular, finely banded texture. Comparatively low-temperature conditions of infiltration process and salting out effect (reduction of CO2 solubility with increasing salt content) lead to the heterogenization of fluid into two phases: aqueous salt solution and almost pure CO2. This results in more aggressive and mobile behavior of the fluid, and, correspondingly, more intense differentiation of the matter and contrast in metasomatic banding. Relations between metasomatic parageneses indicate an evolution trend of the processes from propylite, beresite and listwaenite to alkaline varieties and their repeated manifestation in the same shear zones. The results of Rb-Sr isochron dating of ore metasomatites from eight deposits and occurrences of the Fenno-Karelian craton (more than 100 samples of rocks and minerals) confirm previous assumptions. In general obtained data show that the shear zones controlling the distribution of the studied occurrences operated as fluid pathways during a long time period, up to 200 Ma, after the Svecofennian orogeny completion and did not show any correlation with Paleoproterozoic and Neoarchean magmatism. Rb-Sr isotope data on the metasomatites indicate three peaks of the post-Svecofennian metallogenic activity: 1700–1780, 1600–1650, and 1400–1500 Ma. Since the studied ore deposits were formed within tectonic structures, which evolved on the Archean crust and have a long prehistory, and fluid flows were subjected to intensive contamination by ancient crustal material, a relatively high initial Sr isotope ratios of formed ore-metasomatic systems were developed. High variablity of this value in the studied rocks ((87Sr/86Sr)0 from 0.706 to 0.750) is related to the heterogeneity of crustal protolith and to the relative storage and manifestation of the juvenile component of the fluid, which was responsible for the metasomatic transformation of the Archean and Paleoproterozoic rocks and ore-deposit formation.


Chlorite Shear Zone Chalcopyrite Tourmaline 86Sr 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borozdin, A.P. and Polekhovskii, Yu.S., Uranium oxides and vanadates at the Srednyaya Padma deposit, Transonega Peninsula, Karelia, in Mineralogicheskii muzei (Mineralogical Museum), St. Petersburg: SPbGU, 2005, pp. 96–97.Google Scholar
  2. Bushmin, S.A., Facies, facies metasomatic series, and ore specialization of metamorphic belts, in Metasomatity dokembriya i ikh rudonosnost’ (Precambrian Metasomatites and their Ore Potential), Moscow: Nauka, 1989, pp. 46–64.Google Scholar
  3. Bushmin, S.A., Metasomatic formations in zones of regional metamorphism, in Geologicheskaya s’emka metamorficheskikh i metasomaticheskikh kompleksov (Geological Mapping of Metamorphic and Metasomatic Rocks), St. Petersburg: VSEGEI, 1996, pp. 84–125.Google Scholar
  4. Bushmin, S.A. and Glebovitskii, V.A., Scheme of the Mineral Facies of Metamorphic Rocks, Zap. Mineral. O-va., 2008, vol. 37, no. 2, pp. 1–13.Google Scholar
  5. Faure, G., Principles of Isotope Geology, New York: Wileys, 1986.Google Scholar
  6. Faure, G., Origin of Igneous Rocks: the Isotopic Evidence, Berlin-Heidelberg: Springer-Verlag, 2001.CrossRefGoogle Scholar
  7. Golubev, A.I., Smirnova, N.K., and Trofimov, N.N., Mineral composition and genetic problems of the copper ores of the Voronov Born Deposit, Central Karelia, in Mineralogiya magmaticheskikh i metamorficheskikh porod dokembriya Karelii (Mineralogy of the Precambrian Magmatic and Metamorphic Rocks of Karelia), Petrozavodsk, 1994, pp. 160–172.Google Scholar
  8. Golubev, A.I. and Kuleshevich, L.V., Prospects of the gold potential of the Proterozoic rocks of Karelia, in Geologiya i poleznye iskopaemye Karelii (Geology and Minerals of Karelia), Petrozavodsk, 2001, vol. 3, pp. 15–25.Google Scholar
  9. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G., and Robert, F., Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore Geol. Rev., 1998, vol. 13, pp. 7–27.CrossRefGoogle Scholar
  10. Groves, D., Goldfarb, R., Robert, F., and Hart, C.J.R., Gold deposits in metamorphic belts: overview of current understanding, outstanding problems future research, and exploration significance, Econ. Geol., 2003, vol. 98, pp. 1–29.Google Scholar
  11. Korzhinskii, D.S., Essays on Metasomatic Processes, in Osnovnye problemy v uchenii o magmatogennykh rudnykh mestorozhdeniyakh (Main Problems in Concept of Magmatogenic Ore Deposits), Moscow: AN SSSR, 1953, pp. 332–452.Google Scholar
  12. Kuleshevich, L.V. and Vasyukova, O.V., Formation conditions of the Precambrian Taloveis gold deposit in Karelia, Dokl. Earth Sci., 2005, vol. 403, no. 6, pp. 848–851.Google Scholar
  13. Kuleshevich, L.V. and Panfilova, I.V., Sequence of formation, ore and accessory minerals of gold occurrences of the Kostomuksha structures,, in Svyaz’ poverkhnostnykh struktur zemnoi kory s glubinnymi. Materialy XIV mezhdunarodnoi konferentsii (Relation of the Surface and Deep Structures of the Earth’s Crust. Proceedings of the 14th International Conference), Petrozavodsk: Karel’skii NTs RAN, 2008, part 1, pp. 300–303.Google Scholar
  14. Kuleshevich, L.V., Lavrov, O.B., and Golubev, A.I., The Voronov Bor gold-bearing copper-sulfide deposit and prospects of copper sulfide occurrences in Karelia, in Poleznye iskopaemye Karelii (Minerals of Karelia), Petrozavodsk, 2009, vol. 12, pp. 26–47.Google Scholar
  15. Kuleshevich, L.V. and Lavrov, O.B., Mineralogy of the Voronov Bor Au-bearing copper-sulfide deposit in the Kumsa structure, Central Karelia, in Tr. Vseross. fersmanovskoi nauchnoi sessii. Tezisy (Proceedings of All-Russia Fersman Session), Apatity, 2009, pp. 126–129.Google Scholar
  16. Kuleshevich, L.V., Golubev, A.I, and Lavrov, O.B., Paleoproterozoic gold-bearing copper deposits and occurrences of the Karelian Craton, Dokl. Earth Sci., 2010, vol. 432, no. 1, pp. 677–681.CrossRefGoogle Scholar
  17. Kuleshevich, L.V. and Lavrov, O.B., Voitskoe mine: Au-Cu-S-quartz deposit in the Paleoproterozoic North Vygozero stucture, Geologiya i poleznye iskopaemye Karelii (Geology and Minerals of Karelia), 2010, pp. 116–120.Google Scholar
  18. Larionova, Yu.O., Samsonov, A.V., and Nosova, A.A., The Rb-Sr geochronology and isotopic geochemistry of orehosting rocks and wall-rock metasomatites of the mesothermal Taloveis gold deposit, Western Karelia, Dokl. Earth Sci., 2004, vol. 396, no. 2, pp. 525–528.Google Scholar
  19. Larionova, Yu.O., Nosova, A.A., Petrova, A.Yu., and Samsonov, A.V., Paleoproterozoic (1.7 Ga) age of the Taloveis gold mineralization, Kostomuksha structure, Western Karelia: Rb-Sr isotope-geochronological data, in Tez. dokl. na X petrograficheskom soveshchanii (Proceedings of 10th Petrographic Conference), Apatity, 2005a, vol. 3, pp. 165–166.Google Scholar
  20. Larionova, Yu.O., Samsonov, A.V., Nosova, A.A., and Shatagin, K.N., Paleoproterozoic gold mineralization in the Archean and Paleoproterozoic granitoids of Karelia, in Tez. dokl. na I Rossiiskoi konferentsii po problemam geologii i geodinamiki dokembriya “Geologiya i geokhronologiya arkheya” (Proceedings of the 1rst Russian Conference on the Geological and Geodynamic Problems of the Precambrian “Archean Geology and Geochronology”), St. Petersburg: IGGD RAN, 2005b, pp. 220–226.Google Scholar
  21. Larionova, Yu.O., Samsonov, A.V., Shatagin, K.N., and Sizova, E.V., Timing of gold mineralization in the Archean and Paleoproterozoic complexes of Karelia on the basis of Rb-Sr dating, in Materialy III rossiiskoi konferentsii po izotopnoi geokhronologii (Proceedings of 3rd Russian Conference on Isotope Geochronology), Moscow: GEOS, 2006, vol. 1, pp. 400–405.Google Scholar
  22. Larionova, Yu.O., Samsonov, A.V., Nosova, A.A., and Sizova, E.V., Large-scale Paleoproterozoic stage of gold ore generation in Karelia-a key to understanding the problem of prospecting of large gold objects in region, in Materialy konferentsii MINEX FORUM Severo-Zapad (Proceedings of MINEX FORUM Severo-Zapad Conference), Petrozavodsk, 2007.Google Scholar
  23. Ludwig, K.R., User’s Manual for Isoplot/Ex. Vers. 2.05, Berkley Geochronol. Center Sp. Publ., 1999, no. 1a.Google Scholar
  24. Pirajno, F., Hotspots and mantle plumes: global intraplate tectonics, magmatism and ore deposits, Mineral. Petrol., 2004, vol. 82, pp. 183–216.CrossRefGoogle Scholar
  25. Pirajno, F., Hydrothermal Processes and Mineral Systems, Berlin: Springer, 2009.CrossRefGoogle Scholar
  26. Pirajno, F., Intracontinental strike-slip faults, associated magmatism, mineral systems and mantle dynamics: examples from NW China and Alta-Sayan (Siberia), J. Geodynamics, 2010, vol. 50, pp. 325–346.CrossRefGoogle Scholar
  27. Polekhovskii, Yu.S., Voinov, A.S., and Tarasova, I.P., Determination of peculiarities in the localization of uranium mineralization of diverse formation types on the basis of study and mapping of hydrothermal-metasomatically altered rocks in the uranium-promising structures of the Onega Basin and its framing, in Otchet LGU (Report of LGU), Leningrad, 1986.Google Scholar
  28. Polekhovskii, Yu.S. and Nikitin, S.A., Metasomatites as markers of geological history, in Magmatizm, metamorfizm i geokhronologiya dokembriya vostochno-evropeiskoi platformy v svyazi s krupnomasshtabnym kartirovaniem (Magmatism, Metamorphism, and Geochronology of the Precambrian of the East European Platform in Relation with Large-Scale Mapping), Petrozavodsk, 1987, pp. 146–147.Google Scholar
  29. Polekhovskii, Yu.S. and Tarasova, I.P., Hydrothermal-metasomatic processes and mineral associations of metasomatites in the Paleoproterozoic rocks of the Onega Basin, Karelia, in Metasomatizm i rudoobrazovanie (Metasomatism and Ore Formation), Leningrad, 1987, Vol. 2.Google Scholar
  30. Polekhovskii, Yu.S. and Tarasova, I.P., Metal potential of the Precambrian black shales of the Karelia-Kola region, in Vvedenie v metallogeniyu goryuchikh iskopaemykh i uglerodsoderzhashchikh porod (Introduction in the metallogeny of combustible shales and carbon-bearing rocks), St. Petersburg: Izd-vo SPbGU, 1997, pp. 121–177.Google Scholar
  31. Polekhovskii, Yu.S. and Borozdin, A.P., New data on U-Pb dating of uranium oxides and REE distribution in them on the Zaonega test area in Karelia, in Nauki o Zemle i obrazovanie. Materialy II Mezhdunarodnoi konferentsii Nauchnye chteniya im. Akad. F.Yu. Levinsona-Lessinga (Earth’s Science and Education. Proceedings of 2nd International Conference F.Yu. Levinson-Lessing Scientific Reading), St. Petersburg, 2006, pp. 159–161.Google Scholar
  32. Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield) Glebovitskii, V.A, Ed., St. Petersburg: Nauka, 2005.Google Scholar
  33. Safonov, Yu.G., Volkov, A.V., Wolfson, A.A., Genkin, A.D., and Krylova, T.L., The Maisk Quartz Gold Deposit (Northern Karelia): Geological, Mineralogical, and Geochemical Studies and Some Genetic Problems, Geol. Ore Dep., 2003, vol. 5, pp. 375–394.Google Scholar
  34. Samsonov, A.V., Puchtel, I.S., Shchipansky, A.A., and Bibikova, E.V., 2.72 Ga sanukitoids of the Kostomuksha greenstone belt: petrology and tectonic application, Svekalapko Workshop, Lammi, 1999, p. 58.Google Scholar
  35. Samsonov, A.V., Bibikova, E.V., Larionova, Yu.O., Petrova, A.Yu., and Puchtel’, I.S., Magnesian granitoids (sanukitoids) of the Kostomuksha Area, Western Karelia: Petrology, geochronology, and tectonic environment of formation, Petrology, 2004, vol. 12, no. 5, pp. 412–436.Google Scholar
  36. Sazonova, E.V. and Larionova, Yu.O., Geological and age characteristics of gold mineralization of the Pedrolampi deposit, Central Karelia, in Materialy XVII Molodezhnoi nauchnoi konferentsii “Geologiya, poleznye iskopaemye i geoekologiya Severo-Zapada Rossii” (Proceedings of 17th Youth Conference “Geology, Minerals, and Geoecology of Northwestern Russia), Petrozavodsk: Karel’skii NTs RAN, 2006, pp. 54–57.Google Scholar
  37. Sokolov, Yu.M., Glebovitskii, V.A., and Turchenko, S.I., Genetic classification of mineral deposits of metamorphogenic type, Sov. Geol., 1975, no. 12, pp. 52–66.Google Scholar
  38. Wolfson, A.A., Chugaev, A.V., Safonov, Yu.G., Moralev, G.V., and Golubev, V.N., Results of Rb-Sr and Pb-Pb study of the Mayskoe gold deposit, Northern Karelia, in Izotopnoe datirovanie geologicheskikh protsessov: novye metody i rezul’taty. Tez. dokl. 1 Ross. konf. po izotopnoi geokhronologii. (Isotope Dating of Geological Processes: New Methods and Results. Proceedings of the 1rst Russian Conference on Isotope Geochronology), Moscow, 2003, pp. 93–96.Google Scholar
  39. Wolfson, A.A., Rusinov, V.L., Krylova, T.L., and Chugaev, A.V., Metasomatic alterations in Precambrian metabasites of the Salla-Kuolajarvi graben near the Mayskoe Gold Field, Northern Karelia, Petrology, 2005, vol. 13, no. 2, pp. 161–186.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. A. Glebovitskii
    • 1
    Email author
  • S. A. Bushmin
    • 1
  • B. V. Belyatsky
    • 1
  • E. S. Bogomolov
    • 1
  • A. P. Borozdin
    • 1
  • E. V. Savva
    • 1
  • Yu. M. Lebedeva
    • 1
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations