Advertisement

Petrology

, Volume 21, Issue 3, pp 249–279 | Cite as

Geochemical indicators of the evolution of the ultrabasic-alkaline series of Paleozoic massifs of the Fennoscandian shield

  • A. A. Arzamastsev
  • L. V. Arzamastseva
Article

Abstract

Rare-earth element distribution in the rocks and minerals of the olivinite-clinopyroxenitemelilitolite-melteigite-ijolite-nepheline syenite series was analyzed to study the evolution trends of the alkaline-ultrabasic series of the Kola province. The contents of REE and some other trace elements were determined in olivine, melilite, clinopyroxene, nepheline, apatite, perovskite, titanite, and magnetite. It was established that distribution of most elements in the rocks of the Kovdor, Afrikanda, Vuoriyarvi, and other massifs differ from that in the Khibiny ultrabasic-alkaline series, being controlled by perovskite crystallization. Primary olivine-melanephelinite melts of the minor ultrabasic-alkaline massifs are characterized by the early crystallization of perovskite, the main REE-Nb-Ta-Th-U depository. Precipitation of perovskite simultaneously with olivine and clinopyroxene results in the depletion of residual magma in rare-earth elements and formation of low-REE- and HFSE ijolite and nepheline syenite derivatives. In contrast, the formation of the Khibiny ultrabasic-alkaline series was complicated by mixing of olivine melanephelinite magma with small batches of phonolitic melt. This led to a change in crystallization order of REE-bearing titanates and Ti-silicates and accumulation of the most incompatible elements in the late batches of the melt. As a result, the Khibiny ijolites have the highest REE contents, which are accommodated by high-REE apatite and titanite.

Keywords

Olivine Perovskite Apatite Titanite Nepheline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanas’ev, B.V., Mineral’nye resursy shchelochno-ul’traosnovnykh massivov Kol’skogo poluostrova (Mineral Resources of the Ultrabasic-Alkaline Massifs of the Kola Peninsula), St. Petersburg: Roza vetrov, 2011.Google Scholar
  2. Anders, E. and Grevesse, N., Abundances of the Elements: Meteoritic and Solar, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 197–214.CrossRefGoogle Scholar
  3. Arzamastsev, A.A., Arzamastseva, L.V., Glaznev, V.N., and Raevsky, A.B., Petrologic-Geophysical Model for the Structure and Composition of Deep Levels of the Khibina and Lovozero Complexes, Kola Peninsula, Petrology, 1998, vol. 6, no. 5, pp. 434–450.Google Scholar
  4. Arzamastsev, A.A., Bea, F., Glaznev, V.N., Arzamastseva, L.V., and Montero, P., Kola Alkaline Province in the Paleozoic: Estimation of Composition of Primary Mantle Melts and Magma Generation Conditions, Ross. Zh. Nauk Zemle, 2001, vol. 3, no. 1, pp. 3–24.Google Scholar
  5. Arzamastsev, A.A., Bea, F., Arzamastseva, L.V., and Montero, P., Proterozoic Gremyakha-Vyrmes Polyphase Massif, Kola Peninsula: An Example of Mixing Basic and Alkaline Mantle Melts, Petrology, 2006, vol. 14, no. 4, pp. 361–389.CrossRefGoogle Scholar
  6. Arzamastsev, A.A. and Mitrofanov, F.P., Paleozoic Plume-Lithospheric Processes in Northeastern Fennoscandia: Evaluation of the Composition of the Parental Mantle Melts and Magma Generation Conditions, Petrology, 2009, vol. 17, no. 3, pp. 300–313.CrossRefGoogle Scholar
  7. Arzamastsev, A.A., Bea, F., Arzamastseva, L.V., and Montero, P., Trace Elements in Minerals as Indicators of the Evolution of Alkaline Ultrabasic Dike Series: LA-ICP-MS Data for the Magmatic Provinces of Northeastern Fennoscandia and Germany, Petrology, 2009, vol. 17, no. 1, pp. 46–72.CrossRefGoogle Scholar
  8. Arzamastseva, L.V. and Arzamastsev, A.A., Evolution of the Paleozoic Nephelinite Series of the Kola Province: Evidence from P and Sr Distribution, Geochem. Int., 1996, vol. 34, no. 5, pp. 360–369.Google Scholar
  9. Bell, K., Dunworth, L.A., Bulakh, A.G., and Ivanikov, V.V., Alkaline Rocks of the Turiy Peninsula, Russia, Including Type Locality Turjaite and Turjite: a Review, Can. Mineral., 1996, vol. 34, pp. 265–280.Google Scholar
  10. Brassinnes, S., Balaganskaya, E., and Demaiffe, D., Magmatic Evolution of the Differentiated Ultramafic, Alkaline and Carbonatite Intrusion of Vuoriyarvi (Kola Peninsula, Russia): a LA-ICP-MS Study of Apatite, Lithos, 2005, vol. 85, pp. 76–92.CrossRefGoogle Scholar
  11. Bulakh, A.G. and Ivanikov, V.V., Problemy mineralogii i petrologii karbonatitov, (Mineralogical and Petrological Problems of Carbonatites), Leningrad: Izd-vo Leningradskogo universiteta, 1984.Google Scholar
  12. Carmichael, J.S.A., Nicholls, J., and Smith, A.L., Silica Activity in Igneous Rocks, Am. Mineral., 1970, vol. 55, pp. 242–264.Google Scholar
  13. Caroff, M., Maury, R.C., Leterrier, J., Joron, J.L., Cotten, J., and Guille, G., Trace Element Behavior in the Alkali Basalt Comenditic Trachyte Series from Mururoa Atoll, French Polynesia, Lithos, 1993, vol. 30, pp. 1–22.CrossRefGoogle Scholar
  14. Chakhmouradian, A.R. and Mitchell, R.H., Compositional Variation of Perovskite-Group Minerals from the Carbonatite Complexes of the Kola Alkaline Province, Russia, Can. Mineral., 1997, vol. 35, pp. 1293–1310.Google Scholar
  15. Chakhmouradian, A.R. and Zaitsev, A.N., Afrikanda: An Association of Ultramafic, Alkaline and Alkali-Silica-Rich Carbonatitic Rocks from Mantle-Derived Melts, Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province, Wall, F. and Zaitsev, A.N., Eds., Mineral. Soc. Ser., 2004, vol. 10, pp. 247–291.Google Scholar
  16. Chernysheva, E.A., Nechelyustov, G.N., Kvitko, T.D., and Veis, B.T., Chemical Composition of Perovskite in the Alkaline Rocks of the Nizhnesayanskii Carbonatite Complex, Geokhimiya, 1991, no. 8, pp. 102–108.Google Scholar
  17. Corgne, A. and Wood, B., Trace Element Partitioning and Substitution Mechanisms in Calcium Perovskites, Contrib. Mineral. Petrol., 2005, vol. 149, pp. 85–97.CrossRefGoogle Scholar
  18. Dawson, J.B., Smith, J.V., and Steele, I.M., Trace Element Distribution between Coexisting Perovskite, Apatite and Titanite from Oldoinyo Lengai, Tanzania, Chem. Geol., 1994, vol. 117, nos. 1–4, pp. 285–290.CrossRefGoogle Scholar
  19. Dawson, J.B., Smith, J.V., and Steele, I.M., Petrology and Mineral Chemistry of Plutonic Igneous Xenoliths from the Carbonatite Volcano, Oldoinyo Lengai, Tanzania, J. Petrol., 1995, vol. 36, no. 3, pp. 797–826.CrossRefGoogle Scholar
  20. Eby, G.N., Abundance and Distribution of the Rare-Earth Elements and Yttrium in the Rocks and Minerals of the Oka Carbonatite Complex, Quebec, Geochim. Cosmochim. Acta, 1975, vol. 39, no. 5, pp. 597–620.CrossRefGoogle Scholar
  21. Edgar, M.J., The Genesis of Alkaline Magmas with Emphasis on Their Source Regions: Inferences from Experimental Studies, Alkaline Igneous Rocks, Fitton, J.G. and Upton, B.G.J., Geol. Soc. Sp. Publ., 1987, vol. 30, pp. 29–52.Google Scholar
  22. Egorov, L.S., Iiolit-karbonatitovyi plutonizm (Ijolite-Carbonatite Plutonism), Leningrad: Nedra, 1991.Google Scholar
  23. Fleet, M.E. and Pan, Y., Rare Earth Elements in Apatite: Uptake from H2O-Bearing Phosphate-Fluoride Melts and the Role of Volatile Components, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 22, pp. 4745–4760.CrossRefGoogle Scholar
  24. Foley, S.F., Jackson, S.E., Fryer, B.J., Greenough, J.D., and Jenner, G.A., Trace Element Partition Coefficients for Clinopyroxene and Phlogopite in An Alkaline Lamprophyre from Newfoundland by LAM-ICP-MS, Geochim. Cosmochim. Acta, 1996, vol. 60, no. 4, pp. 629–638.CrossRefGoogle Scholar
  25. Galakhov, A.V. and Batrakov, B.N., Chemical Composition of Ultrabasic Intrusions of Alkaline-Ultrabasic Massifs of the Kola Peninsula, in Veshchestvennyi sostav shchelochnykh intruzivnykh kompleksov Kol’skogo poluostrova (Chemical Composition of Alkaline Intrusive Complexes of the Kola Peninsula), Apatity: Izd. Kol’skogo filiala AN SSSR, 1970, pp. 3–16.Google Scholar
  26. Galakhov, A.V., Petrologiya Khibinskogo shchelochnogo massiva (Petrology of the Khibiny Alkaline Massif), Leningrad: Nauka, 1975.Google Scholar
  27. Gasparik, T. and Drake, M.J., Partitioning of Elements Among Two Silicate Perovskites, Superphase B, and Volatile-Bearing Melt at 23 GPa and 1500–1600°C, Earth Planet. Sci. Lett., 1995, vol. 134, pp. 307–318.CrossRefGoogle Scholar
  28. Harmer, R.E., The Petrogenetic Association of Carbonatite and Alkaline Magmatism: Constraints from the Spitskop Complex, South Africa, J. Petrol., 1999, vol. 40, no. 4, pp. 525–548.CrossRefGoogle Scholar
  29. Hornig-Kjarsgaard, I., Rare Earth Elements in Sövitic Carbonatites and Their Mineral Phases, J. Petrol., 1998, vol. 39, nos. 11–12, pp. 2105–2121.CrossRefGoogle Scholar
  30. Irving, A.T. and Price, R.C., Geochemistry and Evolution of Lherzolite-Bearing Phonolitic Lavas from Nigeria, Australia, East Germany, and New Zealand, Geochim. Cosmochim. Acta, 1981, vol. 45, no. 8, pp. 1309–1320.CrossRefGoogle Scholar
  31. Ivanikov, V.V., Rukhlov, A.S., and Bell, K., Magmatic Evolution of the Melilitite-Carbonatite-Nephelinite Dyke Series of the Turiy Peninsula (Kandalaksha Bay, White Sea, Russia), J. Petrol., 1998, vol. 39, nos. 11–12, pp. 2043–2059.CrossRefGoogle Scholar
  32. Karbonatity Khibin (Khibiny Carbonatites), Dudkin, O.B. and Minakov, F.V., Eds., Apatity: Izd. Kol’skogo filiala AN SSSR, 1984.Google Scholar
  33. Karchevsky, P.I. and Moutte, J., The Phoscorite-Carbonatite Complex of Vuoriyarvi, Northern Karelia, in Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province, Wall, F. and Zaitsev, A.N., Eds., Mineral. Soc. Ser., 2004, vol. 10, pp. 163–199.Google Scholar
  34. Kato, T., Ringwood, A.E., and Irifune, T., Experimental Determination of Element Partitioning between Silicate Perovskites, Garnets and Liquids: Constraints on Early Differentiation of the Mantle, Earth Planet. Sci. Lett., 1988, vol. 89, pp. 123–145.CrossRefGoogle Scholar
  35. Kjarsgaard, B.A. and Hamilton, D.L., Liquid Immiscibility and the Origin of Alkali-Poor Carbonatites, Mineral. Mag, 1988, vol. 52, pp. 43–55.CrossRefGoogle Scholar
  36. Klemme, S. and Dalpe, C., Trace-Element Partitioning between Apatite and Carbonatite Melt, Am. Mineral., 2003, vol. 88, pp. 639–646.Google Scholar
  37. Kogarko, L.N., Problemy genezisa agpaitovykh magm (Genetic Problems of Agpaitic Magmas), Moscow: Nauka, 1977.Google Scholar
  38. Kogarko, L.N., Ore-Forming Potential of Alkaline Magmas, Lithos, 1990, vol. 26, nos. 1/2, pp. 167–175.CrossRefGoogle Scholar
  39. Kogarko, L.N., Plant, D.A., Henderson, C.M., and Kjarsgaard, B.A., Na-Rich Carbonate Inclusions in Perovskite and Calzirtite from the Guli Intrusive Ca-Carbonatite, Polar Siberia, Contrib. Mineral. Petrol., 1991, vol. 109, no. 1, pp. 124–129.CrossRefGoogle Scholar
  40. Kogarko, L.N., Kononova, V.A., Orlova, M.P., and Woolley, A., Alkaline Rocks and Carbonatites of the World. Part 2. Former USSR, London: Chapman & Hall, 1995.CrossRefGoogle Scholar
  41. Korobeinikov, A.N., Mitrofanov, F.P., Gehor, S., Laajoki, K., Pavlov, V.P., and Mamontov, V.P., Geology and Copper Sulfide Mineralization of the Salmagorskii Ring Igneous Complex, Kola Peninsula, NW Russia, J. Petrol., 1998, vol. 39, nos. 11/12, pp. 2033–2041.CrossRefGoogle Scholar
  42. Koster van Groos, A.F. and Wyllie, P.J., Liquid Immiscibility in the Join NaAlSi3O8-CaAl2Si2O8-Na2CO3-H2O, Am. J. Sci., 1973, vol. 273, pp. 465–487.CrossRefGoogle Scholar
  43. Kramm, U., Kogarko, L.N., Kononova, V.A., and Vartiainen, H., The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr Ages Define 380–360 Age Range for All Magmatism, Lithos, 1993, vol. 30, pp. 33–44.CrossRefGoogle Scholar
  44. Kramm, U. and Kogarko, L.N., Nd and Sr Isotope Signatures of the Khibina and Lovozero Agpaitic Centres, Kola Alkaline Province, Russia, Lithos, 1994, vol. 32, pp. 225–242.CrossRefGoogle Scholar
  45. Kravchenko, S.M., Mineev, D.A., and Kamenev, E.A., Rare-Earth Elements and Strontium in the Rocks and Minerals of the Ijolite-Urtite Complex of the Khibiny Massif, Geokhimiya, 1979, no. 7, pp. 1035–1045.Google Scholar
  46. Kukharenko, A.A., Bulakh, A.G., Il’inskii, G.A., Shinkarev, N.F., and Orlova, M.P., Metallogenicheskie osobennosti shchelochnykh formatsii vostochnoi chasti Baltiiskogo shchita (Metallogenic Features of Alkaline Formations of the Eastern Baltic Shield), Leningrad: Nedra, 1971.Google Scholar
  47. Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya-Korsakova, O.M., Nefedov, E.I., Il’inskii, G.A., Sergeev, A.S., and Abakumova, N.B., Kaledonskii kompleks ul’traosnovnykh, shchelochnykh porod i karbonatitov Kol’skogo poluostrova i Severnoi Karelii (Caledonian Complex of Ultrabasic, Alkaline Rocks and Carbonatites of the Kola peninsula and North Karelia), Moscow: Nedra, 1965.Google Scholar
  48. Larsen, L.M., Distribution of REE and Other Trace Elements Between Phenocrysts and Peralkaline Undersaturated Magmas, Exemplified by Rocks from the Gardar Igneous Province, S. Greenland, Lithos, 1979, vol. 12, no. 4, pp. 303–315.CrossRefGoogle Scholar
  49. Lee, W.-J. and Wyllie, P.J., Liquid Immiscibility between Nephelinite and Carbonatite from 1.0 to 2.5 GPa Compared with Mantle Melt Compositions, Contrib. Mineral. Petrol., 1997, vol. 127, pp. 1–16.CrossRefGoogle Scholar
  50. Le Bas, M.J., Nephelinites and Carbonatites, in Alkaline Igneous Rocks, Fitton, J.G. and Upton, B.G.J., Eds., Geol. Soc. Sp. Publ., 1987, vol. 30, pp. 53–83.Google Scholar
  51. Le Bas, M.J. and Streckeisen, A.L., The IUGS Systematics of Igneous Rocks, J. Geol. Soc. London, 1991, vol. 148, pp. 825–833.CrossRefGoogle Scholar
  52. Lloyd, F.E., Edgar, A.D., and Ragnarsdottir, K.V., LREE Distribution in Perovskite, Apatite and Titanite from South West Ugandan Xenoliths and Kamafugite Lavas, Mineral. Petrol., 1996, vol. 57, nos. 3–4, pp. 205–228.CrossRefGoogle Scholar
  53. Mitchell, R.H., Perovskites: a Revised Classification Scheme for An Important Rare Earth Element Host in Alkaline Rocks, in Rare Earth Minerals: Chemistry, Origin and Ore Deposits, Jones, A.P. Wall, F., and Williams, C.T., Eds., London: Chapman and Hall, 1996b, pp. 41–76.Google Scholar
  54. Mitchell, R.H., The Melilitite Clan, in Undersaturated Alkaline Rocks: Mineralogy, Petrogenesis and Economic Potential, Mitchell, R.H., Ed., Mineral. Assoc. Canada. Short Course, 1996a, vol. 24, pp. 123–152.Google Scholar
  55. Mitchell, R.H. and Reed, S.J.B., Ion Microprobe Determination of Rare Earth Elements in Perovskite from Kimberlites and Alnites, Mineral. Mag., 1988, vol. 52, pp. 331–339.CrossRefGoogle Scholar
  56. Mitchell, R.H., The Classification of Melilite Clan, in Alkaline Magmatism and the Problems of Mantle Sources, Irkutsk: 2001, pp. 117–150.Google Scholar
  57. Nagasawa, H., Schreiber, H.D., and Blanchard, D.P., Partition Coefficients of REE and Sc in Perovskite, Melilite, and Spinel and Their Implications for Allende Inclusions, Lunar Sci., 1976, vol. 7, pp. 588–590.Google Scholar
  58. Nielsen, T.F.D., Tertiary Alkaline Magmatism in East Greenland: a Review, Alkaline Igneous Rocks, Fitton, J.G. and Upton. B.G.J., Eds. Geol. Soc. Sp. Publ., 1987, vol. 30, pp. 489–515.Google Scholar
  59. Nielsen, T.F.D., Solovova, I.P., and Veksler, I.V., Parental Melts of Melilitolite and Origin of Alkaline Carbonatite: Evidence from Crystallized Melt Inclusions, Gardiner Complex, Contrib. Mineral. Petrol., 1997, vol. 126, pp. 331–344.CrossRefGoogle Scholar
  60. Onuma, K. and Yamamoto, M., Crystallization in the Silica-Undersaturated Portion of the System Diopside-Nepheline-Akermanite-Silica and Its Bearing on the Formation of Melilitites and Nephelinites, J. Fac. Sci. Hokkaido Univ., 1976, vol. 4, no. 17, pp. 347–355.Google Scholar
  61. Onuma, N., Ninomiya, S., and Nagasawa, H., Mineral/Groundmass Partition Coefficients for Nepheline, Melilite, Clinopyroxene and Perovskite in Melilite-Nepheline Basalt, Nyiragongo, Zaire, Geochem. J., 1981, vol. 15, no. 4, pp. 221–228.CrossRefGoogle Scholar
  62. Pan, V. and Longhi, J., The System Mg2SiO4-Ca2SiO4-CaAl2O4-NaAlSiO4-SiO2. One Atmosphere Liquidus Equilibria of Analogs of Alkaline Mafic Lavas, Contrib. Mineral. Petrol., 1990, vol. 105, no. 5, pp. 569–584.CrossRefGoogle Scholar
  63. Paster, T.P., Schauwecher, D.S., and Haskin, L.A., The Behavior of Some Trace Elements during Solidification of the Skaergaard Layered Series, Geochim. Cosmochim. Acta, 1974, vol. 38, pp. 1549–1577.CrossRefGoogle Scholar
  64. Rass, I.T., Rare-Earth Elements in the Rock-Forming Minerals of Melilitic Rocks in Alkaline-Ultrabasic Complexes, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 1477–1488.CrossRefGoogle Scholar
  65. Rass, I.T., Parageneticheskii analiz zonal’nykh mineralov (Paragenetic Analysis of Zoned Minerals), Moscow: Nauka, 1986.Google Scholar
  66. Rass, I.T. and Laputina, I.P., Composition and Zoning of Accessory Minerals of Alkaline-Ultrabasic Rocks as an Indicator of Composition and Differentiation Features of Parental Magmas, Geokhimiya, 1995, no. 5, pp. 720–732.Google Scholar
  67. Rass, I.T., Trace Element Fractionation in Coexisting High- and Low-Ca Alkali Ultramafic Series of the Odikhincha Massif (Polar Siberia), Geochem. Int., 2004, vol. 42, no. 8, pp. 744–754.Google Scholar
  68. Sweeney, R.J., Carbonatite Melt Compositions in the Earth’s Mantle, Earth Planet. Sci. Lett., 1994, vol. 128, pp. 259–270.CrossRefGoogle Scholar
  69. Ternovoi, V.I., Karbonatitovye massivy i ikh poleznye iskopaemye (Carbonatite Massifs and their Minerals), Leningrad: Izd-vo Leningradskogo universiteta, 1977.Google Scholar
  70. Veksler, I.V., Fedorchuk, Y.M., and Nielsen, T.F.D., Phase Equilibria in the Silica-Undersaturated Part of the KAlSiO4-Mg2SiO4-Ca2SiO4-SiO2-F System at 1 atm and the Larnite-Normative Trend of Melt Evolution, Contrib. Mineral. Petrol., 1998a, vol. 131, no. 4, pp. 347–363.CrossRefGoogle Scholar
  71. Veksler, I.V., Nielsen, T.F.D., and Sokolov, S.V., Mineralogy of Crystallized Melt Inclusions from Gardiner and Kovdor Ultramafic Alkaline Complexes: Implications for Carbonatite Genesis, J. Petrol., 1998b, vol. 39, nos. 11–12, pp. 2015–2031.CrossRefGoogle Scholar
  72. Veksler, I.V. and Teptelev, M.P., Conditions for Crystallization and Concentration of Perovskite-Type Minerals in Alkaline Magmas, Lithos, 1990, vol. 26, nos. 1/2, pp. 177–189.CrossRefGoogle Scholar
  73. Verhulst, A., Balaganskaya, E., Kirnarsky, Y., and Demaiffe, D., Petrological and Geochemical Trace Elements and Sr-Nd Isotopes Characteristics of the Paleozoic Kovdor Ultramafic, Alkaline and Carbonatite Intrusion Kola Peninsula, NW Russia, Litho, 2000, vol. 51, nos. 1–2, pp. 1–25.CrossRefGoogle Scholar
  74. Watson, E.B. and Green, T.H., Apatite/Liquid Partition Coefficients for the Rare Earth Elements and Strontium, Earth Planet. Sci. Lett., 1981, vol. 56, pp. 405–421.CrossRefGoogle Scholar
  75. Wilkinson, J.F.G. and Stolz, A.J., Low-Pressure Fractionation of Strongly Undersaturated Alkaline Ultrabasic Magma: the Olivine-Melilite-Nepheline at Moiliili, Oahu, Hawaii, Contrib. Mineral Petrol, 1983, vol. 38, pp. 363–374.CrossRefGoogle Scholar
  76. Woolley, A.R., Alkaline Rocks and Carbonatites of the World. Part 1. North and South America, London: British Museum (Natural History), 1987.Google Scholar
  77. Worner, G., Beusen, J.-M., Duchateau, N., Gijbels, R., and Schmincke, H.-U., Trace Element Abundances and Mineral/Melt Distribution Coefficients in Phonolites from the Laacher See Volcano (Germany), Contrib. Mineral. Petrol., 1983, vol. 84, nos. 2–3, pp. 152–173.Google Scholar
  78. Wyllie, P.J. and Huang, W.-L., Influence of Mantle CO2 in the Generation of Carbonatites and Kimberlites, Nature, 1975, vol. 257, pp. 297–299.CrossRefGoogle Scholar
  79. Yaxley, G.M. and Brey, G.P., Phase Relations of Carbonate-Bearing Eclogite Assemblages from 2.5 to 5.5 GPa: Implications for Petrogenesis of Carbonatites, Contrib. Mineral. Petrol., 2004, vol. 146, pp. 606–619.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations