, Volume 20, Issue 6, pp 491–505 | Cite as

New geochronometer for the direct isotopic dating of native platinum minerals (190Pt-4He method)

  • Yu. A. ShukolyukovEmail author
  • O. V. Yakubovich
  • A. G. Mochalov
  • A. B. Kotov
  • E. B. Sal’nikova
  • S. Z. Yakovleva
  • S. I. Korneev
  • B. M. Gorokhovskii


A new method of isotope geochronology was proposed for dating native platinum minerals on the basis of the α-decay of the natural isotope 190Pt. The analysis of the thermal desorption of helium in the crystal lattice of native metals, including platinum, allowed us to predict a very high thermal stability (retentivity) of radiogenic 4He in native platinum minerals up to their melting temperatures. In order to validate the proposed 190Pt-4He method, direct isotopic dating was performed for isoferroplatinum from the Galmoenan dunite-clinopyroxenite and Kondyor alkaline ultramafic massifs. The results of dating obtained by this method for primary ore platinum from the Galmoenan Massif (70 ± 5 Ma) are consistent with geological observations and mean Sm-Nd and Rb-Sr isotopic age estimates. The 190Pt-4He age obtained for placer isoferroplatinum from the Kondyor Massif (112 ± 7 Ma) also agrees with geological observations and is close to the K-Ar and Rb-Sr ages of koswites (phlogopite-magnetite pyroxenites, gabbros, nepheline syenites, and metasomatic rocks after dunites). Our experimental data demonstrated that the 190Pt-4He method is a promising tool for dating native platinum minerals.


Olivine Helium Atom Metasomatic Rock Nepheline Syenite Chrome Spinel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Bataina, B. and Janecke, J., Half-Lives of Long-Lived Alpha Emitters, Radiochim. Acta, 1987, vol. 42, pp. 159–164.Google Scholar
  2. Astrakhantsev, O.V., Batanova, V.G., and Perfil’tsev, A.S., Structure of the Gal’moenan Dunite-Clinopyroxenite Gabbro Massif, Geotektonika, 1991, no. 1, pp. 47–62.Google Scholar
  3. Bannykh, O.A., Budberg, P.B., Alisova, S.P., et al., Diagrammy sostoyaniya dvoinykh- i mnogokomponentnykh sistem na osnove zheleza (Iron-Based Two- and Multicomponent State Diagrams), Moscow: Izd-vo Metallurgiya, 1986.Google Scholar
  4. Batanova, V.G., Astrakhantsev, O.V., and Sidorov, E.G., Dunites of the Gal’moenan Ultrabasite-Gabbro Massif, Koryak Highland, Izv. Akad. Nauk SSSR, Ser. Geol., 1991, no. 1, pp. 24–35.Google Scholar
  5. Batanova, V.G., Pertsev, A.N., Kamenetsky, V.S., et al., Crustal Evolution of Island-Arc Ultramafic Magma: Galmoenan Pyroxenite-Dunite Plutonic Complex, Koryak Highland (Far East Russia), J. Petrol., 2005, vol. 46, no. 7, pp. 1345–1366.CrossRefGoogle Scholar
  6. Begemann, F., Ludwig, K.R., Lugmair, G.W., et al., Call for An Improved Set of Decay Constants for Geochronological Use, Geochim. Cosmochim. Acta, 2001, vol. 65, no. 1, pp. 111–121.CrossRefGoogle Scholar
  7. Berglund, M. and Wieser, M.E., Isotopic Compositions of the Elements 2009 (IUPAC Technical Report), Pure Appl. Chem., 2011, vol. 83, no. 2, pp. 397–410.CrossRefGoogle Scholar
  8. Blendowsce, R., Fliessbach, T., and Walliser, H., From α-Decay to Exotic Decays—a Unified Model, Z. Phys.: A Hardons and Nuclei, 1991, vol. 39, p. 121CrossRefGoogle Scholar
  9. Brown, B.A., Simple Relations for Alpha Decay Half-Lifes, Phys. Rev. C., 1992, vol. 46, p. 811.CrossRefGoogle Scholar
  10. Buck, B., Mercant, A.C., and Perez, S.M., Half-Lives of Favored Alpha Decay from Nuclear Ground States, Atom. Data. Nucl. Data Tables, 1993, vol. 54, p. 53.CrossRefGoogle Scholar
  11. Coggon, Ju., An Application of the 190 Pt- 18 6Os Isotope Decay System to Dating Platinum-Group Minerals: Doctoral Thesis, Duham University, 2010.
  12. Cook, D.L., Walker, R.J., Horan, M.F., et al., Pt-Re-Os Systematics of Group IIAB and IIIAB Iron Meteorites, Geochim. Cosmochim. Acta, 2004, vol. 68, p. 1413.CrossRefGoogle Scholar
  13. Dvoinye i mnogokomponentnye sistemy na osnove medi. Razdel GRNTI: Metallovedenie (Copper-Based Two- and Multicomponent Systems), Shukhardin, S.V., Ed., Moscow: Nauka, 1979.Google Scholar
  14. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnik v 3-kh tomakh (State Diagrams of Two-Component Metallic Systems, A Reference Book, 3 Vols.,) Lyakishev, N.P., Ed., Moscow: Izd-vo Mashinostroenie, 1996.Google Scholar
  15. Dimarko, A., Duarte, S.B., Tavares, O.A.P., et al., Effekt of Nuclear Deformationon the Alpha-Decay Half Life of Even-Even Alpha Emitters, Int. J. Mod. Phys. E, 2000, vol. 9, p. 205.Google Scholar
  16. Garcia, F., Rodrigues, O., Duarte, S.B., et al., Alfa Decay and Nuclear Deformation: The Case for Favoured Alpha Transitions of Even-Even Alpha Emitters, J. Phys. G: Nucl. Part. Phys., 2000, vol. 26, p. 755.CrossRefGoogle Scholar
  17. Geologiya, petrologiya, i rudonosnost’ Konderskogo massiva (Geology, Petrology, and Ore Potential of the Konder Massif) Kosygin, Yu.A., Ed., Moscow: Nauka, 1994.Google Scholar
  18. Gerling, E.K., Modes of Helium Occurrence in Minerals and Migration of Helium in Them, Extended Abstracts of Doctoral Dissertation in Geology and Mineralogy, Leningrad: Radium Inst. Acad. Sci. USSR, 1939b.Google Scholar
  19. Gerling, E.K., Heat of Helium Diffusion as Criterion for Application of Mineral for Helium Dating, Dokl. Akad. Nauk SSSR, 1939a, vol. 24, no. 6, pp. 570–573.Google Scholar
  20. Gerling, E.K., Sovremennoe sostoyanie argonovogo metoda opredeleniya absolyutnogo vozrasta i ego primenenie v geologii (Modern State of Argon Method of Absolute Age Determination and it’s Application in Geology), Moscow: Izd-vo AN SSSR, 1961.Google Scholar
  21. Graeffe, G. and Nurmia, M., The Use of Ticks Sources in Alpha Spectrometry, Ann. Acad. Sci. Fennicae, Ser. A-VI, 1961, vol. 77, p. 1.Google Scholar
  22. Graeffe, G., On the Alpha Activity of Platinum Isotopes, Ann. Acad. Sci. Fennicae, Ser. A-VI, 1963, vol. 128, pp. 1–34.Google Scholar
  23. Gruppa Analitikov po Izucheniyu Rynkov Metallov (Group of Analysts on Studying Metal Market), METAL Research International Metallurgical Research Group// 2011.
  24. Hoffmann, G., Zur Experimentellen Entscheidung Der Frage Der Radioaknivitt Aller Elemente II, Z. Phys., 1921, vol. 7, p. 254.CrossRefGoogle Scholar
  25. Holland, H.D., Radiation Damage and Its Use in Age Determination, in Nuclear Geology, Faul, H., Ed., New York: Wiley, 1954, pp. 175–179.Google Scholar
  26. Hornshöj, P., Hansen, P.G., Jonson, B., Ravn, H.L., et al., Widths for S- and D-Wave α-Decay of Neutron-Deficient Isotopes with Z ≤ 82, Nucl. Phys. A., 1974, vol. A230, p. 365.CrossRefGoogle Scholar
  27. Hurley, P.M., The Helium Age Method and the Distribution and Migration of Helium in Rocks in Nuclear Geology. A Symposium on Nuclear Phenomena in the Earth Sciences, Faul, H., Ed., New York: Wileys, 1954, pp. 301–329.Google Scholar
  28. Kamo, S.L., Czamanske, G.K., and Krogh, T.E., A Minimum U-Pb Age for Siberian Flood-Basalt Volcanism, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3505–3511.CrossRefGoogle Scholar
  29. Karetnikov, A.S., On problem of Age Determination of the Konder Massif, Tikhookean. Geol., 2005, vol. 24, no. 4, pp. 76–83.Google Scholar
  30. Koroteev, Yu.M., Lopatina, O.V., and Chernov, I.P., Electron and Atom Structure of the Zr-He System, in Nauchnaya sessiya MIFI. Sbornik Nauchnykh Trudov (Scientific Session of MIFI. A Collection of Works), 2008, pp. 1168–1170.Google Scholar
  31. Koroteev, Yu.M., Lopatina, O.V., and Chernov, I.P., Structure Stability and Electronic Properties of the Zr-He System: First-Principles Calculations, Phys. Solid State, 2009, vol. 51, no. 8, pp. 1600–1607.CrossRefGoogle Scholar
  32. Koryaksko-Kamchatskii region — novaya platinonosnaya provintsiya Rossii (Koryak-Kamchatka Region—A New Platinum Province of Russia), St. Petersburg: Sankt-Peterburgskaya kartograficheskaya fabrika, 2002.Google Scholar
  33. Kuznetsov, I.V., Nazimova, Yu.V., and Korneev, S.I., PGM Minerals in the Dunites of the Gal’moenan Massif, Koryak Highland, Zap. Vses. Mineral. O-va, 2002, no. 2, pp. 72–84.Google Scholar
  34. Landa, E.A., Markovskii, B.A., Belyatskii, B.V., et al., Age and Isotopic Signatures of Alpine-Type, Zonal, and Layered Mafic-Ultramafic Complexes of Kamchatka, Dokl. Earth Sci., 2002, vol. 385, no. 6, pp. 727–730.Google Scholar
  35. MacFarlane, R.D. and Kohman, T.P., Natural Alpha Radioactivity in Medium-Heavy Elements, Phys. Rev., 1961. vol. 121, pp. 1758–1769.CrossRefGoogle Scholar
  36. Mochalov, A.G., Placers of Platinum-Group Metals, in Rossypnye mestorozhdeniya Rossii i drugikh stran SNG (Placer Deposits of Russia and Other CIS Countries), Moscow: Nauchnyi mir, 1997, pp. 127–165.Google Scholar
  37. Mochalov, A.G. and Khoroshilova, T.S., The Konder Alluvial Placer of Platinum Metals, in International Platinum, Athens: Theophrastus Publications, 1998, pp. 206–220.Google Scholar
  38. Mochalov, A.G., Zaitsev, V.P., Pertsev, A.N., and Vlasov, E.A., Mineralogy and Genesis of “Alluvial Platinum” from Placers of the Southern Koryak Highland (Russia), Geol. Ore Dep., 2002a, vol. 44, no. 3, pp. 188–212.Google Scholar
  39. Mochalov, A.G., Zaitsev, V.P., Nazimova, Yu.V., et al., Variations in the Composition of “Alluvial Platinum” from Placers of the Southern Koryak Highland (Russia), Geol. Ore Dep., 2002b, vol. 44, no. 6, pp. 486–498.Google Scholar
  40. Mochalov, A.G., PGM Placer-Forming Formations of the Russian Far East, in Rudnye mestorozhdeniya i protsessy rudoobrazovaniya (Ore Deposits and Processes of Ore Formation), Moscow: IGEM RAN, 2005, pp. 367–386.Google Scholar
  41. Morgan, J.W., Walker, R.J., Horan, M.F., et al., 190Pt-186Os Systematics of the Sudbure Igneous Covples, Ontario, Geochim. Cosmochim. Acta, 2002, vol. 66, p. 273–290.CrossRefGoogle Scholar
  42. Nazimova, Yu.V., Zaitsev, V.P., and Mochalov, A.G., Platinum Group Minerals of the Gal’moenan Gabbro-Pyroxenite-Dunite Massif in the Southern Part of the Koryak Highland (Russia), Geol. Ore Dep., 2003, vol. 45, no. 6, pp. 481–499.Google Scholar
  43. Petrzhak, K.A. and Yakunin, M.I., Study of α-Radioactivity of Natural Platinum, Zh. Eksp. Teor. Fiz., 1961, vol. 41, pp. 1780–1782.Google Scholar
  44. Poenaru, D.N., Greiner, W., Depta, K., et al., Calculated Half-Lives and Kinetic Energies for Spontaneous Emission of Heavy Ions from Nuclei, At. Data Nucl. Data Tables, 1986, vol. 34, p. 423–538.CrossRefGoogle Scholar
  45. Porschen, W. and Riezler, W., Natuerliche Radioaktivitaet Von Platin Und Neodim, Z. Naturforsch., A: Phys. Sci., 1954, vol. 9A, p. 701.Google Scholar
  46. Shukolyukov, Yu.A., Yakubovich, O.V., and Rytsk, E.Yu., About Possibility of Isotope Dating of Native Gold by the (U-Th)/He Method, Dokl. Earth Sci., 2010, vol. 430, pp. 90–94.CrossRefGoogle Scholar
  47. Shukolyukov, Yu.A., Yakubovich, O.V., Gorokhovskii, B.M., et al., A New 190Pt-4He Method of Native Platinum Age Determination, Dokl. Earth Sci., 2011, vol. 441, pp. 1597–1582.CrossRefGoogle Scholar
  48. Shukolyukov, Yu.A., Yakubovich, O.V., Yakovleva, S.Z., et al., Geothermochronology Based on Noble Gases: III. Migration of Radiogenic He in the Crystal Structure of Native Metals with Applications to Their Isotopic Dating, Petrology, 2012, vol. 20, no. 1, pp. 1–20.CrossRefGoogle Scholar
  49. Schultz, L. and Franke, L., Helium, Ne and Argon in Meteorites, A Data Collection. Update 2002, Mainz: Max Planck Institut Fuer Chemie, 2002.Google Scholar
  50. Sidorov, E.G., Platinum Potential of the Basite—Hyperbasite Complexes of the Koryak-Kamchatka Region, Extended Abstracts of Doctoral Dissertation in Geology and Mineralogy, Vladivostok: Far East Geol. Inst. Far East Branch RAS, 2009.Google Scholar
  51. Starik, I.E., Yadernaya geokhronologiya (Nuclear Geochronology), Moscow: Izd-vo AN SSSR, 1961.Google Scholar
  52. Taagepera, R. and Nurmia, M., On the Relations between Half-Life and Energy Release in Alpha Decay, Ann. Acad. Sci. Fennicae, Ser. A-VI, 1961, vol. 78, p. 1.Google Scholar
  53. Tavares, O.A., Duarte, S.B., Rodriguez, O., et al., Effective Liquid Drop Description for Alpha-Decayof Atomic Nuclei, J. Physik. G: Nucl. Part. Phys., 1998, vol. 21, p. 1757.CrossRefGoogle Scholar
  54. Tavares, O.A.P. and Terranova, M.L., Alpha Activity of 190Pt Isotope Measured with CR-39 Track Detector, Radiat. Measurements, 1997, vol. 27, no. 1, pp. 19–25.CrossRefGoogle Scholar
  55. Tavares, O.A.P., Terranova, M.L., and Medeiros, E.L., New Evaluation of Alpha Decay Half-Life of 190Pt Isotope for the Pt-Os Dating System, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006, vol. 243, no. 1, pp. 256–260.CrossRefGoogle Scholar
  56. Walker, R.J., Morgan, J.W., Nalldrett, A.J., et al., Re-Os Systematics of Ni-Cu Sulfide Ores, Sudbure Igneous Complex, Ontario: Evidence for a Major Crustal Component, Earth Planet. Sci. Lett., 1991, vol. 105, pp. 416–429.CrossRefGoogle Scholar
  57. Walker, R.J., Morgan, J.W., Beary, E.S., et al., Applications of the 190Pt-186Os Isotope System to Geochemistry and Cosmochemistry, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 4799–4807.CrossRefGoogle Scholar
  58. Yakubovich, O.V., Shukolyukov, Yu.A., Kotov, A.B., et al., Geothermochronology Based on Noble Gases: II. Stability of the (U-Th)/He Isotope System in Zircon, Petrology, 2010, vol. 18, no. 6, pp. 555–570.CrossRefGoogle Scholar
  59. Zaitsev, V.P., Landa, E.A., Markovskii, B.A., and Belyatskii, B.V., Age Estimates and Isotope-Geochemical Features of Zonal Dunite-Clinopyroxenite-Gabbro Massifs of the Koryak Highland, Dokl. Earth Sci., 2002, vol. 386, no. 1, pp. 777–780.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Yu. A. Shukolyukov
    • 1
    • 2
    Email author
  • O. V. Yakubovich
    • 1
    • 2
  • A. G. Mochalov
    • 1
  • A. B. Kotov
    • 1
  • E. B. Sal’nikova
    • 1
  • S. Z. Yakovleva
    • 1
  • S. I. Korneev
    • 2
  • B. M. Gorokhovskii
    • 1
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Faculty of GeologySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations