Advertisement

Petrology

, Volume 20, Issue 3, pp 271–285 | Cite as

Hydrosilicate liquids in the system Na2O-SiO2-H2O with NaF, NaCl and Ta: Evaluation of their role in ore and mineral formation at high T and P

  • S. Z. Smirnov
  • V. G. Thomas
  • V. S. Kamenetsky
  • O. A. Kozmenko
  • R. R. Large
Article

Abstract

Consideration of the existence of hydrosilicate liquids (HSL) in nature can help in understanding the accumulation and transport of some mineral- and ore-forming components at the transition from magmas to hydrothermal fluids. We studied the experimental formation of HSL using a base system Na2O-SiO2-H2O with addition of NaF, NaCl and metallic Ta. The interaction between quartz and aqueous solution, performed at 1.5 kbar and 600°C and followed either by cooling or by quench, showed that the formation of HSL occurred when initial Na2O exceeded 2 wt %. Neither NaF nor NaCl have a significant effect on the formation of HSL. The HSL concentrates F, whereas Cl partitions into the aqueous fluid. With addition of Ta to the system, the HSL becomes metal-enriched. Natural analogs of experimental HSL can be found among “melt/fluid” inclusions entrapped in quartz and other minerals of miaroles in granite pegmatites and raremetal granites. The HSL is a novel medium enabling extreme concentrations of lithophile ore metals at the magmatic-hydrothermal transition.

Keywords

Fluid Inclusion Tourmaline Aqueous Fluid Melt Inclusion Quench Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anfilogov, V.N., Abramov, V.A., Kovalenko, V.I., and Ogorodova, V.Y., Phase Relations in Agpaitic Area of the System Na2O-K2O-Al2O3-SiO2-H2O at Pressure 1000 kg/cm2, Dokl. Akad. Nauk SSSR, 1972, vol. 204, pp. 944–947.Google Scholar
  2. Audetat, A., Gunther, D., and Heinrich, C.A., MagmaticHydrothermal Evolution in a Fractionating Granite: A Microchemical Study of the Sn-W-F-Mineralized Mole Granite (Australia), Geochim. Cosmochim. Acta, 2000, vol. 64, no. 19, pp. 3373–3393.CrossRefGoogle Scholar
  3. Bailey, D.K. and Macdonald, R., Alkali-Feldspar Fractionation Trends and Deviation of Peralkaline Liquid, Am. J. Sci., 1969, vol. 267, no. 2, pp. 242–248.CrossRefGoogle Scholar
  4. Balitsky, V.S., Kurashige, M., Balitskaya, L.V., and Iwasaki, W., Study of Quartz Solubility and “Heavy” Phase Formation under Industrial Synthetic Quartz Growth Conditions, Proc. of Joint ISHR&ICSTR, Kochi: Kochi Univ., 2000, pp. 318–321.Google Scholar
  5. Barnes, H.L., Solubilities of Ore Minerals, in Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Ed., New York: John Wiley and Sons, 1979, pp. 404–459.Google Scholar
  6. Bureau, H. and Keppler, H., Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle: Experimental Evidence and Geochemical Implications, Earth Planet. Sci. Lett., 1999, vol. 165, no. 2, pp. 187–196.CrossRefGoogle Scholar
  7. Burnham, C.V., Magmas and Hydrothermal Fluids, in Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Ed, New York: John Wiley and Sons, 1979, pp. 71–136.Google Scholar
  8. Butuzov, V.P. and Bryatov, L.V., Study of Phase Equilibria of the Part of the System H2O-SiO2-Na2CO3 at High Temperatures and Pressures, Crystallography, 1957, vol. 2, pp. 670–675.Google Scholar
  9. Chevychelov, V.Y., Zaraysky, G.P., and Borodulin, G.P., Experimental Study of Effect of a Melt Alkalinity, Temperature and Pressure on Solbility of Rare Elements (Ta and Nb) in Granitoid Melt., in Proc. of Alkaline Magmatism of the Earth and Its Ore Potential, Donetsk, 2007, PP. 259–263.Google Scholar
  10. Duc-Tin, Q., Audetat, A., and Keppler, H., Solubility of tin in (Cl, F)-Bearing Aqueous Fluids at 700°C, 140 MPa: A LA-ICP-MS Study of Syntehtic Fluid Inclusions, Geochim. Cosmochim. Acta, 2007, vol. 71, no. 13, pp. 3323–3335.CrossRefGoogle Scholar
  11. Foner, H.A. and Gal, I., Accurate Spectrophotometric Method for the Determination of Silica in Rocks, Minerals and Related Materials, Analyst, 1981, vol. 106, pp. 521–528.CrossRefGoogle Scholar
  12. Ganeev, I.G. and Rumyantsev, V.N.,On the Nature of Immiscibility in the System H2O-SiO2-NaOH at Elevated Pressures and Temperatures, Neorg. Mater., 1971, vol. 7, no. 12, pp. 2191–2194.Google Scholar
  13. Glyuk, D.S. and Trufanova, L.G., Melting in the System Granite-H2O with Addition of HF, HCl, Fluorides, Chlorides and Hydroxides of Lithium, Sodium and Potassium under Pressure 1000 kg/cm3, Geokhimiya, 1977, vol. 7, pp. 1003–1012.Google Scholar
  14. Halter, W.E. and Webster, J.D., The Magmatic to Hydrothermal Transition and Its Bearing on Ore-Forming Systems-Preface, Chem. Geol., 2004, vol. 210, nos. 1–4, pp. 1–6.CrossRefGoogle Scholar
  15. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, New York: Wiley-Interscience Publication, 1979.Google Scholar
  16. Jeffrey, P.G., Chemical Methods of Rock Analysis, Oxford: Pergamon Press, 1970.Google Scholar
  17. Kamenetsky, V.S., Naumov, V.B., Davidson, P., van Achterbergh, E., and Ryan, C.G., Immiscibility between Silicate Magmas and Aqueous Fluids: a Melt Inclusion Pursuit into the Magmatic-Hydrothermal Transition in the Omsukchan Granite (NE Russia), Chem. Geol., 2004, vol. 210, nos. 1–4, pp. 73–90.CrossRefGoogle Scholar
  18. Kennedy, G.C., Wasserburg, G.J., Heard, H.C., and Newton, R.C., The Upper Three-Phase Region in the System SiO2-H2O, Am. J. Sci., 1962, vol. 260, pp. 501–521.CrossRefGoogle Scholar
  19. Kessel, R., Ulmer, P., Pettke, T., Schmidt, M.W., and Thompson, A.B., The Water-Basalt System at 4 to 6 GPa: Phase Relations and Second Critical Endpoint in K-Free Eclogite at 700 to 140°C, Earth Planet. Sci. Lett., 2005, vol. 237, pp. 873–892.CrossRefGoogle Scholar
  20. Korotayev, M.Y. and Kravchuk, K.G., Hetrophase State of Hydrothermal Solutions under Endogeneous Mineral Forming Conditions, Preprint of Institute of Experimental Mineralogy of USSR Academy of Science, Chernogolovka, 1985.Google Scholar
  21. Kotel’nikova, Z.A. and Kotel’nikov, A.R., Experimental Study of Heterogeneous Fluid Equilibria in Silicate-Salt-Water Systems, Geol. Ore Dep., 2010a, vol. 52, no. 2, pp. 154–166.CrossRefGoogle Scholar
  22. Kotel’nikova, Z.A. and Kotel’nikov, A.R., Immiscibility in Sulfate-Bearing Fluid Systems at High Temperatures and Pressures, Geochem. Int., 2010b, vol. 48, no. 4, pp. 381–389.CrossRefGoogle Scholar
  23. Kotel’nikova, Z.A. and Kotel’nikov, A.R., Liquid Separation in the Presence of Vapor in Synthetic Fluid Inclusions Obtained from Na2CO3 Solutions, Dokl. Earth Sci., 2009, vol. 429, no. 2, pp. 1533–1535.CrossRefGoogle Scholar
  24. Kotel’nikova, Z.A. and Kotel’nikov, A.R., Method of Synthetic Fluid Inclusions in Quartz in Experimental Study of the Water-Sodium Sulfate System, Geol. Ore Dep., 2009, vol. 51, no. 1, pp. 68–73.CrossRefGoogle Scholar
  25. Kotel’nikova, Z.A. and Kotel’nikov, A.R., Synthetic NaF-bearing Fluid Inclusions in Quartz Syntehsized at 450–500°C and P = 500–2000 Bar, Geochem. Int., 2004, vol. 42, no. 8, pp. 794–798.Google Scholar
  26. Kotel’nikova, Z.A. and Kotel’nikov, A.R., NaF-bearing Fluids: Experimental Investigation at 500–800°C and P = 2000 bar using Synthetic Fluid Inclusions in Quartz, Geochem. Int., 2008, vol. 46, no. 1, pp. 48–61.CrossRefGoogle Scholar
  27. Kotelnikova, Z.A. and Kotelnikov, A.R., Synthetic NaF-Bearing Fluid Inclusions, Geochem. Int., 2002, vol. 40, no. 6, pp. 594–600.Google Scholar
  28. Kravchuk, K.G. and Valyashko, V.M., Equilibrium Diagram of the System Na2O-SiO2-H2O, in Methods of Experimental Investigations of Hydrothermal Equilibria, Godovikov, A.A., Ed., Novosibirsk: Nauka, 1979, pp. 105–117.Google Scholar
  29. Kravchuk, K.G., Phase Equilibria in the System SiO2-Na2O-H2O in Wide Range of Temperatures and Pressures, Cand. Diss. Sci. (Geol.-Min.) Moscow: Inst. Org. Inorg. Chem. USSR Academy of Science, 1979.Google Scholar
  30. Lineveawer, J.L., Oxygen Outgasing Caused by the Electron Bombardment of Glass, J. Appl. Phys., 1962, no. 34, pp. 1786–1791.Google Scholar
  31. Lowenstern, J.B., Chlorine, Fluid Immiscibility, and Degassing in Peralkaline Magmas from Pantelleria, Italy, Am. Mineral., 1994, vol. 79, nos. 3–4, pp. 353–369.Google Scholar
  32. Morey, G.W. and Fenner, C.N., The Ternary System H2O-K2SiO3-SiO2, J. Am. Chem. Soc., 1917, vol. 39, pp. 1173–1229.CrossRefGoogle Scholar
  33. Morey, G.W. and Fleischer, M., Equilibrium between Vapor and Liquid Phases in the System CO2-H2O-K2O-SiO2, Geol. Soc. Am. Bull., 1940, vol. 51, pp. 1035–1058.Google Scholar
  34. Morgan, G.B. and London, D., Effect of Current Density on the Electron Microprobe Analysis of Alkali Aluminosilicate Glasses, Am. Mineral., 2005, vol. 90, no. 7, pp. 1131–1138.CrossRefGoogle Scholar
  35. Mustart, D.A., Phase Relations in the Peralkaline Portion of the System Na2O-Al2O3-SiO2-H2O, Cand. Sci. (Chem.) Dissertation, Stanford: Stanford University, 1972.Google Scholar
  36. Peretyazhko, I.S., Smirnov, S.Z., Kotel’nikov, A.R., and Kotel’nikova, Z.A., Experimental Study of the System HBO3-NaF-SiO2-H2O at 350–800°C and 1–2 kbar by the Method of Syntehtic Fluid Inclusions, Russ. Geol. Geophys., 2010, vol. 51, no. 4, pp. 349–368.CrossRefGoogle Scholar
  37. Peretyazhko, I.S., Smirnov, S.Z., Thomas, V.G., and Zagorsky, V.Y., Gels and Melt-Like Gels in Endogenous Mineral Formation, in Metallogeny of the Pacific North West: Tectonics, Magmatism and Metallogeny of Active Continental Margins, Khanchuk, A.I., Gonevchuk, G.A., Mitrokhin, A.N., et al., Ed., Vladivostok: Dal’nauka, 2004a, pp. 306–309.Google Scholar
  38. Peretyazhko, I.S., Zagorsky, V.Y., Smirnov, S.Z., and Mikhailov, M.Y., Conditions of Pocket Formation in the Oktyabrskaya Tourmaline-Rich Gem Pegmatite (the Malkhan field, Central Transbaikalia, Russia), Chem. Geol., 2004b, vol. 210, nos. 1–4, pp. 91–111.CrossRefGoogle Scholar
  39. Rankin, A.H., Ramsey, M.H., Coles, B., Vanlangevelde, F., and Thomas, C.R., The Composition of Hypersaline, Iron-Rich Granitic Fluids Based on Laser-ICP and Synchrotron-XRF Microprobe Analysis of Individual Fluid Inclusions in Topaz, Mole Granite, Eastern Australia, Geochim. Cosmochim. Acta, 1992, vol. 56, no. 1, pp. 67–79.CrossRefGoogle Scholar
  40. Rickers, K., Thomas, R., and Heinrich, W., The Behavior of Trace Elements during the Chemical Evolution of the H2O, B, and F-Rich Granite-Pegmatite-Hydrothermal System at Ehrenfriedersdorf, Germany, a SXRF Study of melt and Fluid Inclusions, Miner. Deposita, 2006, vol. 41, no. 3, pp. 229–245.CrossRefGoogle Scholar
  41. Roedder, E., Fluid Inclusion Evidence for Immiscibility in Magmatic Differentiation, Geochim. Cosmochim. Acta, 1992, vol. 56, no. 1, 5–20.CrossRefGoogle Scholar
  42. Rowe, J.J., Fournier, R.O., and Morey, G.W., System Water-Sodium Oxide-Silicon Dioxide at 200, 250, amd 300°C, Inorg. Chem., 1967, no. 6, pp. 1183–1188.Google Scholar
  43. Rumyantsev, V.N., Structure of Crystal-Forming Medium and Hydrothermal Growth of Quartz in Aqueous NaOH-Solutions, in Proceedings of 4th International Conference “Crystals: Growth, Properties, Real Structure and Application,” Alexandrov: VNIISIMS, 1999, pp. 16–38.Google Scholar
  44. Schmidt, M.W., Vielzeuf, D., and Auzennau, E., Melting and Dissolution of Subducting Crust at High Pressures: the Key Role of White Mica, Earth Planet. Sci. Lett., 2004, vol. 228, pp. 65–84.CrossRefGoogle Scholar
  45. Shinohara, H., Exsolution of Immiscible Vapor and Liquid Phases from a Crystallizing Silicate Melt: Implications for Chlorine and Metal Transport, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 5215–5222.CrossRefGoogle Scholar
  46. Simakin, A.G., Salova, T.P., and Zavelsky, V.O., Mechanism of Water Dissolution in Sodium-Silicate Melts and Glasses: Structural Interpretation of Spectroscopic Data., Geochem. Int., 2008, vol. 46, no. 2, pp. 107–115.CrossRefGoogle Scholar
  47. Smirnov, S.Z., Peretyazhko, I.S., Zagorsky, V.E., and Mikhailov, M.Y., Inclusions of Unusual Late Magmatic Melts in Quartz from the Oktyabr’skaya Pegmatite Vein, Malkhan Field (Central Transbaikal Region), Dokl. Earth Sci., 2003, vol. 392, no. 7, pp. 999–1003.Google Scholar
  48. Smirnov, S.Z., Thomas, V.G., Demin, S.P., and Drebushchak, V.A., Experimental Study of Boron Solubility and Speciation in the Na2O-B2O3-SiO2-H2O System, Chem. Geol., 2005, vol. 223, nos. 1–3, pp. 16–34.CrossRefGoogle Scholar
  49. Solovova, I.P., Girnis, A.V., Naumov, V.B., Kovalenko, V.I., and Guzhova, A.V., The Degassing Mechanism of Acid Magma Formation of the 2 Fluid Phases under Crystallization of Pantellerites of the Pantelleria Island, Dokl. Alad Nauk SSSR, 1991, vol. 320, no. 4, pp. 982–985.Google Scholar
  50. Sowerby, J.R. and Keppler, H., The Effect of Fluorine, Boron and Excess Sodium on the Critical Curve in the Albite-H2O Systen, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 32–37.CrossRefGoogle Scholar
  51. Thomas, R., Webster, J.D., Rhede, D., Seifert, W., Rickers, K., Forster, H.J., Heinrich, W., and Davidson, P., The Transition from Peraluminous to Peralkaline Granitic Melts: Evidence from Melt Inclusions and Accessory Minerals, Lithos, 2006, vol. 91, nos. 1–4, pp. 137–149.CrossRefGoogle Scholar
  52. Tuttle, O.F. and Friedman, I.I., Soda-SIlica-Water System in the Optimum Region for Quartz Synthesis, Geol. Soc. Am. Bull., 1946, vol. 57, no. 12, pp. 1286–1287.Google Scholar
  53. Veksler, I.V., Thomas, R., and Schmidt, C., Experimental Evidence of Three Coexisting Immiscible Fluids in Synthetic Granitic Pegmatite, Am. Mineral., 2002, vol. 87, nos. 5–6, pp. 775–779.Google Scholar
  54. Webster, J.D., Exsolution of Magmatic Volatile Phases from Cl-Enriched Mineralizing Granitic Magmas and Implications for Ore Metal Transport, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 5, pp. 1017–1029.CrossRefGoogle Scholar
  55. Wilkinson, J.J., Nolan, J., and Rankin, A.H., Silicothermal Fluid: a Novel Medium for Mass Transport in the Lithosphere, Geology, 1996, vol. 24, no. 12, pp. 1059–1062.CrossRefGoogle Scholar
  56. Yardley, B.W.D., Metal Concentrations in Crustal Fluids and Their Relationship to Ore Formation, Econ. Geol., 2005, vol. 100, no. 4, pp. 613–632.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. Z. Smirnov
    • 1
    • 2
  • V. G. Thomas
    • 1
  • V. S. Kamenetsky
    • 3
  • O. A. Kozmenko
    • 1
  • R. R. Large
    • 3
  1. 1.Institute of Geology and Mineralogy SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.ARC Centre of Excellence in Ore DepositsUniversity of TasmaniaHobart, TasmaniaAustralia

Personalised recommendations