, Volume 20, Issue 1, pp 21–39 | Cite as

Silicification of peridotites at the stalemate fracture zone (Northwestern Pacific): Reconstruction of the conditions of low-temperature weathering and tectonic interpretation

  • S. A. Silantyev
  • A. A. Novoselov
  • E. A. Krasnova
  • M. V. Portnyagin
  • F. Hauff
  • R. Werner


During cruise SO201-1b of the joint Russian-German expedition on the R/V Sonne in 2009, mantle peridotites affected by varying secondary alteration were dredged on the eastern slope of the northwestern segment of the Stalemate transverse ridge adjacent to the eponymous fracture zone. The collection discussed in this paper included four samples of silicified serpentinites after dunites and 11 lherzolite samples serpentinized to a varying degree. The abundance of amorphous silica and quartz, very high SiO2 content (up to 88.7 wt %), and unusually low MgO (up to 1.4 wt %) in the serpentinized dunites strongly distinguish these rocks from the known products of hydrothermal alteration and low-temperature (seafloor) weathering of peridotites in the oceanic crust. In order to determine the conditions and processes resulting in the silicification of peridotites at the Stalemate Fracture Zone, thermodynamic modeling accounting for the kinetics of mineral dissolution implemented in the GEOCHEQ program package was used in this study. The results of modeling allowed us to suppose that the geochemical and mineralogical effects observed in the silicified serpentinized dunites of the Stalemate Fracture Zone are consequences of low-temperature deserpentinization of oceanic materials under subaerial conditions.


Olivine Serpentine Fracture Zone Oceanic Crust Transverse Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoise, E., and Gibert, B., Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich Brine Through Peridotites, Environ. Sci. Technol., 2009, vol. 43, pp. 1226–1231.CrossRefGoogle Scholar
  2. Bach, W. and Klein, F., Silica Metasomatism of Oceanic Serpentinites, Goldschmidt Conference, 2007, A48.Google Scholar
  3. Bazylev, B.A., Allochemical Metamorphism of Mantle Peridotites in the Hayes Fracture Zone of the North Atlantic, Petrology, 1997, vol. 5, no. 4, pp. 322–337.Google Scholar
  4. Beinlich, A., Austrheim, H., Glodny, J., Erambert, M., and Andersen, T.B., CO2 Sequestration and Extreme Mg Depletion in Serpentinized Peridotite Clasts from the Devonian Solund Basin, SW-Norway, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 6935–6964.CrossRefGoogle Scholar
  5. Bonatti, E., Brunelli, D., Buck, W.R., Cipriani, A., Fabretti, P., Ferrante, V., Gasperini, L., and Ligi, M., Flexural Uplift of a Lithospheric Slab Near the Vema Transform (Central Atlantic): Timing and Mechanisms, Earth Planet. Sci. Lett., 2005, vol. 240, nos. 3–4, pp. 642–655.CrossRefGoogle Scholar
  6. Bonatti, E., Vertical Tectonism in Oceanic Fracture Zones, Earth Planet. Sci. Lett., 1978, vol. 37, no. 3, pp. 369–379.CrossRefGoogle Scholar
  7. Brady, P.V. and Gislason, S.R., Seafloor Weathering Controls on Atmospheric CO2 and Global Climate, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 5, pp. 965–973.CrossRefGoogle Scholar
  8. Bulmer, C.E. and Lavkulich, L.M., Pedogenic and Geochemical Processes of Ultramafic Soils Along a Climatic Gradient in Southwestern British Columbia, Canadian J. Soil Sci., 1994, vol. 74, pp. 165–177.CrossRefGoogle Scholar
  9. Delvigne, J., Bisdom, E.B.A., Sleeman, J., and Stoops, G., Olivines, Their Pseudomorphs and Secondary Products, Pedologie, 1979, vol. 29, pp. 247–309.Google Scholar
  10. Erickson, B.H. and Grim, P.J., Profiles of Magnetic Anomalies South of Aleutian Island Arc, Geol. Soc. Am. Bull., 1969, vol. 80, pp. 1387–1390.CrossRefGoogle Scholar
  11. FS Sonne. Fahrbericht. Cruise Report SO201-1b. Kalmar, no. 2009. pp. O201–1.
  12. Fullam, T.J., Supko, P.R., and Boyce, R.E., Some Aspects of Late Cenozoic Sedimentation in the Bering Sea and North Pacific Ocean, DSDP Init. Rept., 1973, vol. 19, pp. 887–896.Google Scholar
  13. Gasperini, L., Bonatti, E., Ligi, M., Sartori, R., Borsetti, A., Negri, A., Ferrari, A., and Sokolov, S., Stratigraphic Numerical Modeling of a Carbonate Platform on the Romanche Transverse Ridge, Equatorial Atlantic, Mar. Geol., 1997, vol. 136, pp. 245–257.CrossRefGoogle Scholar
  14. Grim, P.J. and Erickson, B.H., Fracture Zones and Magnetic Anomalies South of Aleutian Trench, J. Geophys. Res., 1969, vol. 74, pp. 1488–1494.CrossRefGoogle Scholar
  15. Jochum, K.P., Wang, X., Mertz-Kraus, R., Nohl, U., Schmidt, S., Schwager, B., Stoll, B., Qichao, Yang Q., and Weis, U., Geostandards and Geoanalytical Research, Bibliographic Rev., 2009, vol. 34, no. 4, pp. 407–410.Google Scholar
  16. Josef, J.A., Fisk, M.R., and Giovannoni, S., Peridotite Dissolution Rates in Microbial Enrichment Cultures, Proc. Ocean Drilling Program, Sci. Res., Kelemen, P.B., Kikawa, E., and Miller, D.J., Eds., 2007, vol. 209, pp. 1–38.Google Scholar
  17. Kastens, K., Bonatti, E., Caress, D., Carrara, G., Dauteuil, O., Frueh-Green, G., Ligi, M., and Tartarotti, P., The Vema Transverse Ridge (Central Atlantic), Mar. Geophys. Res., 1998, vol. 20, pp. 533–556.CrossRefGoogle Scholar
  18. Kelemen, P.B. and Matter, J., In Situ Carbonation of Peridotite for CO2 Storage, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 45, pp. 17295–17300.CrossRefGoogle Scholar
  19. Kelemen, P.B., Kikawa, E., Miller, D.J., et al., Alteration of Abyssal Peridotite-Initial Results of Ocean Drilling Program Leg 209 (Mid-Atlantic Ridge, 15°N), EGU meeting, Proc. Ocean Drilling Program, Init. Rept., 2004, vol. 209, pp. 25–30. doi:10.10.2973/ Scholar
  20. Krasnova, E., Portnyagin, M., Silantiev, S., Werner, R., Hauff, F., and Hoernle, K., Major and Trace-Element Geochemistry of Ultramafic Rocks from the Stalemate Fracture Zone (NW Pacific), Goldschmidt Conference. 2011.Google Scholar
  21. Lonsdale, P., Paleogene History of the Kula Plate: Offshore Evidence and Onshore Implications, Geol. Soc. Am. Bull., 1988, vol. 100, pp. 733–754.CrossRefGoogle Scholar
  22. Mironenko, M.V., Melikhova, T.Yu., Zolotov, M.Yu., and Akinfiev, N.N., GEOSHEQ-M—A Complex for Thermodynamic and Kinetic Modeling of Geochemical Systems. Ver. 2008, Vestn. OGGGN RAN, 2008, no. 1/ URL: informbul-1-2008/mineral-22.pdf. Rea, D.K. and Dixon, J.M., Late Cretaceous and Paleogene Tectonic Evolution of the North Pacific Ocean, Earth Planet. Sci. Lett., 1983, vol. 64, pp. 67–73.Google Scholar
  23. Ryan, W.B.F., Carbotte S.M., Coplan J.O., O’Hara S., Melkonian A., Arko R., Weissel R.A., Ferrini V., Goodwillie A., Nitsche F., Bonczkowski J., Zemsky R., Global Multi-Resolution Topography Synthesis, Geochem. Geophys. Geosyst., 2009, vol. 10, no. Q03014, p. 9.Google Scholar
  24. Shipboard Scientific Party, Introduction to Lef 145: North Pacific Transect, Proc. Ocean Drilling Program, Init. Rept., 1993, vol. 145, pp. 5–7.Google Scholar
  25. Silantyev, S.A., Krasnova, E.A., Kannat, M., Bortnikov, N.S., Kononkova, N.N., and Bel’tenev, V.E., Peridotite-Gabbro-Trondhjemite Association of the Mid-Atlantic Ridge between 12°58′ and 14°45′N: Ashadze and Logachev Hydrothermal Vent Fields, Geochem. Int., 2011, no. 4, pp. 323–354.Google Scholar
  26. Silantyev, S.A., Mironenko, M.V., and Novoselov, A.A., Hydrothermal Systems in Peridotites of Slow-Spreading Mid-Oceanic Ridges. Modeling Phase Transitions and Material Balance: Downwelling Limb of a Hydrothermal Circulation Cell, Petrology, 2009, vol. 17, no. 2, pp. 138–157.CrossRefGoogle Scholar
  27. Silantyev, S.A., Variations in the Geochemical and Isotopic Characteristics of Residual Peridotites along the Mid-Atlantic Ridge as a Function of the Nature of the Mantle Magmatic Sources, Petrology, 2003, vol. 11, no. 4, pp. 305–326].Google Scholar
  28. Snow, J.E. and Dick, H.J.B., Pervasive Magnesium Loss by Marine Weathering of Peridotite, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 4219–4235.CrossRefGoogle Scholar
  29. Wessel, P. and Smith, W.H.F., The Generic Mapping Tools (GMT), Version 3.0, Technical Reference Cookbook, SOEST/NOAA, 1995.Google Scholar
  30. Worley, W.R., Dissolution Kinetics and Mechanisms in Quartz- and Granite-Water Systems, Massachusetts: Massachusetts Inst. Technol., 1994.Google Scholar
  31. Zolotov, M.Yu. and Mironenko, M.V., Timing of Acid Weathering on Mars: A Kinetic-Thermodynamic Assessment, J. Geophys. Res., 2007, vol. 112, p. E07006.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. A. Silantyev
    • 1
  • A. A. Novoselov
    • 1
  • E. A. Krasnova
    • 1
  • M. V. Portnyagin
    • 1
    • 2
  • F. Hauff
    • 2
  • R. Werner
    • 2
  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Leibniz Institute of Marine Sciences (IFM-GEOMAR)KielGermany

Personalised recommendations