, Volume 18, Issue 2, pp 183–208 | Cite as

Genesis of mineralized cavities (Miaroles) in granitic pegmatites and granites

  • I. S. PeretyazhkoEmail author


Analysis the development of large fluid segregations in a flux of small fluid bubbles during the degassing of granitic (pegmatitic) melts indicates that the velocity of the buoyant ascent of fluid bubbles depends on their sizes, the viscosity and density of the melts, and the duration of melt flow. Possible variants of the primary and secondary boiling of magma are discussed depending on the P-T conditions and concentrations of H2O, F, B, and other components dissolved in the magma. The possible density ranges of the fluid phases are considered, along with the viscosity and density of granitic (pegmatitic) melts, velocities of the buoyant ascent of fluid bubbles in them, and the processes of their coalescence and accumulation in the temperature range of 650–850°C. Provisional evaluates are obtained for the duration of melt crystallization and the development of intrusive massifs and dikes of granites and syngenetic intragranite and epigenetic (intruded into the host rocks) granite pegmatites. Simulation data and geological observations suggest that large fluid segregations were formed already in the magma chambers in which the heterogeneous granite (pegmatitic) magma was derived, before its emplacement into the host rocks. These generation regions could be magma chamber areas within granite intrusions, in which melts enriched in volatiles were accumulated and then degassed with the release of fluid phases of various composition and density. The crystallization of fluid-rich melts under favorable conditions gives rise to granites with miarolitic structures. The emplacement of heterogeneous pegmatitic magma (which consists of immiscible silicate melts and large fluid segregations) into the host rocks results in that these segregations (would-be miaroles) occur in any part of the pegmatite-hosting chamber. This explains why miaroles of significantly different composition and with broadly varying proportions of their filling minerals may occur in various parts of pegmatite veins or their swells, as well as near contacts with the host rocks.


Host Rock Tourmaline Partial Molar Volume Small Bubble MINERALIZED Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Abramov, “Formation of Fluorine-Rich Magmas by Fluid Filtration through Silicic Magmas: Petrological and Geochemical Evidence of Metamagmatism,” Petrologiya 12(1), 22–45 (2004) [Petrology 12, 17–36 (2004)].Google Scholar
  2. 2.
    O. Bachmann and G. W. Bergantz, “On the Origin of Crystal-Poor Rhyolites Extracted from Batholithic Crystal Mushes,” J. Petrol. 45, 1565–1582 (2004).CrossRefGoogle Scholar
  3. 3.
    D. R. Baker, “Granitic Melt Viscosities: Empirical and Configurational Entropy Models for Their Calculation,” Amer. Mineral. 81, 126–134 (1996).Google Scholar
  4. 4.
    D. R. Baker, P. Lang, G. Robert, J-F. Bergevin, E. Allard, and L. Bai, “Bubble Growth in Slightly Supersaturated Albite Melt at Constant Pressure,” Geochim. Cosmochim. Acta 70, 1821–1838 (2006).CrossRefGoogle Scholar
  5. 5.
    D. R. Baker and J. Vaillancourt, “The Low Viscosities of F and H2O-Bearing Granitic Melts and Implications for Melt Extraction and Transport,” Earth Planet. Sci. Lett. 132, 199–211 (1995).CrossRefGoogle Scholar
  6. 6.
    V. N. Balashov, G. P. Zaraiskii, and R. Zel’tman, “Fluid-Magma Interaction and Oscillatory Phenomena during Crystallization of Granitic Melt by Accumulation and Escape of Water and Fluorine,” Petrologiya 8(6), 563–585 (2000) [Petrology 8, 505–524 (2000)].Google Scholar
  7. 7.
    Y. Bottinga and D. F. Weill, “Densities of Liquid Silicate Systems Calculated from Partial Molar Volumes of Oxide Components,” Amer. J. Sci. 269, 169–182 (1970).Google Scholar
  8. 8.
    E. Bourgue and P. Richet, “The Effects of Dissolved CO2 on the Density and Viscosity of Silicate Melts: A Preliminary Study,” Earth Planet. Sci. Lett. 193, 57–68 (2001).CrossRefGoogle Scholar
  9. 9.
    G. Brandeis and C. Jaupart, “On the Interaction between Convection and Crystallization in a Cooling Magma Chamber,” Earth Plan. Sci. Lett. 77, 345–361 (1986).CrossRefGoogle Scholar
  10. 10.
    G. Brandeis and B. D. Marsh, “The Convection Liquidus in a Solidifying Magma Chamber: A Fluid Dynamic Investigation,” Nature 339(6226), 613–616 (1989).CrossRefGoogle Scholar
  11. 11.
    C. W. Burnham and H. Ohmoto, “Late-Stage Processes of Felsic Magmatism,” Mining Geology. Spec. issue, No. 8, 1–11 (1980).Google Scholar
  12. 12.
    P. A. Candela and S. L. Blevin, “Do Some Miarolitic Granites Preserve Evidence of Magmatic Volatile Phase Permeability,” Econ. Geol. 90, 2310–2316 (1995).CrossRefGoogle Scholar
  13. 13.
    G.-N. Chen and R. Grapes, Granite Genesis: In situ Melting and Crustal Evolution (Springer-Verlag, Berlin-Heidelberg-Dordrecht, 2007).CrossRefGoogle Scholar
  14. 14.
    D. B. Dingwell, K. U. Hess, and R. Knoche, “Granite and Granitic Pegmatite Melts: Volumes and Viscosities,” R. Soc. Edinburgh Trans. Earth Sci. 87, 65–72 (1996b).Google Scholar
  15. 15.
    D. B. Dingwell, R. Knoche, S. L. Webb, and M. Pichavant, “The Effect of B2O3 on the Viscosity of Haplogranitic Melts,” Am. Mineral. 77, 457–461 (1992).Google Scholar
  16. 16.
    D. B. Dingwell, M. Pichavant, and F. Holtz, “Experimental Studies of Boron in Granitic Melts,” in Boron: Mineralogy, Petrology and Geochemistry, Ed. by E. S. Grew and L. M. Anovitz, Rev. Mineral. 33, 331–385 (1996a).Google Scholar
  17. 17.
    N. L. Dobretsov, A. G. Kidryashkin, and A. A. Kidryashkin, Deep Geodynamics (SO RAN, Fil. TGEOU, Novosibirsk, 2001) [in Russian].Google Scholar
  18. 18.
    J. E. Gardner, “Bubble Coalescence in Rhyolitic Melts during Decompression from High Pressure,” J. Volcanol. Geotherm. Res. 166, 161–176 (2007a).CrossRefGoogle Scholar
  19. 19.
    J. E. Gardner, “Heterogeneous Bubble Nucleation in Highly Viscous Silicate Melts during Instantaneous Decompression from High Pressure,” Chem. Geol. 236, 1–12 (2007b).CrossRefGoogle Scholar
  20. 20.
    J. E. Gardner and M.-H. Denis, “Heterogeneous Bubble Nucleation on Fe-Ti Crystals in High-Silica Rhyolitic Melts,” Geochim. Cosmochim. Acta 68, 3587–3597 (2004).CrossRefGoogle Scholar
  21. 21.
    J. E. Gardner, M. Hilton, and M. R. Carrol, “Bubble Growth in Highly Viscous Silicate Melts during Continuous Decompression from High Pressure,” Geochim. Cosmochim. Acta. 64, 1473–1483 (2000).CrossRefGoogle Scholar
  22. 22.
    D. Giordano, C. Romano, D. B. Dingwell, B. Poe, and H. Behrens, “The Combined Effects of Water and Fluorine on the Viscosity of Silicic Magmas,” Geochim. Cosmochim. Acta. 68, 5159–5168 (2004).CrossRefGoogle Scholar
  23. 23.
    V. S. Golubev and V. N. Sharapov, Dynamics of Endogenous Ore Formation (Nedra, Moscow, 1974) [in Russian].Google Scholar
  24. 24.
    I. Haapala, “Magmatic and Postmagmatic Processes in Tin-Mineralized Granites: Topaz-Bearing Leucogranite in the Eurajoki Rapakivi Granite Stock, Finland,” J. Petrol. 38, 1654–1659 (1997).CrossRefGoogle Scholar
  25. 25.
    K. U. Hess and D. B. Dingwell, “Viscosities of Hydrous Leucogranitic Melts: A Non-Arrhenian Model,” Am. Mineral. 81, 1297–1300 (1996).Google Scholar
  26. 26.
    F. Holtz, H. Behrens, and D. B. Dingwell, “The Effects of F, B2O3 and P2O5 on the Solubility of Water in Haplogranitic Melts Compared to Silicate Melts,” Contrib. Mineral. Petrol. 113, 492–501 (1993).CrossRefGoogle Scholar
  27. 27.
    F. Holtz, W. Johannes, N. Tamic, H. Behrens, “Maximum and Minimum Water Contents of Granitic Melts Generated in the Crust: An Evaluation and Implications,” Lithos 56, 1–14 (2001).CrossRefGoogle Scholar
  28. 28.
    S. Hurwitz and O. Navon, “Bubble Nucleation in Rhyolitic Melts: Experiments at High Pressure, Temperature and Water Content,” Earth Planet. Sci. Lett. 122, 267–280 (1994).CrossRefGoogle Scholar
  29. 29.
    J. C. Jaeger, “Cooling and Solidification of Igneous Rocks,” in Basalts, The Poldervaart Treatise on Rocks of Basaltic Composition, Ed. by au]H. H. Hess and A. Poldervaart (Wiley, New York, 1968), pp. 503–537.Google Scholar
  30. 30.
    R. H. Jahns and C. M. Burnham, “Experimental Studies of Pegmatite Genesis. I. A Model of the Derivation and Crystallization of Granitic Pegmatites,” Econ. Geol. 64, 843–864 (1969).CrossRefGoogle Scholar
  31. 31.
    A. S. Kalinin and E. N. Vasil’eva, “Convection of Melts in Vertical Magmatic Chambers,” Dokl. Akad. Nauk SSSR 210(6), 1435–1438 (1973).Google Scholar
  32. 32.
    R. Knoche, D. B. Dingwell, and S. L. Webb, “Melt Densities for Leucogranites and Granitic Pegmatites: Partial Molar Volumes for SiO2, Al2O3, Na2O, K2O, Li2O, Rb2O, Cs2O, MgO, CaO, SrO, BaO, B2O3, P2O5, F2O−1, TiO2, Nb2O5, Ta2O5, and WO3,” Geochim. Cosmochim. Acta 59, 4645–4652 (1995).CrossRefGoogle Scholar
  33. 33.
    O. N. Kosukhin, I. T. Bakumenko, and V. P. Chupin, Magmatic Stage of the Formation of Granite Pegmatites (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  34. 34.
    T. Kuritani, T. Yokoyama, and E. Nakamura, “Rates of Thermal and Chemical Evolution of Magmas in Cooling Magma Chamber: A Chronological and Theoretical Study on Basaltic and Andesitic Lavas from Rishiri Volcano, Japan,” J. Petrol. 48, 1295–1319 (2007).CrossRefGoogle Scholar
  35. 35.
    R. A. Lange, “The Effects of H2O, CO2 and F on the Density and Viscosity of Silicate melts,” Rev. Mineral. 30, 331–369 (1994).Google Scholar
  36. 36.
    R. A. Lange and I. S. E. Carmichael, “Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 Liquids: New Measurements and Derived Partial Molar Properties,” Geochim. Cosmochim. Acta 53, 2195–2204 (1987).CrossRefGoogle Scholar
  37. 37.
    J. F. Larsen, “Heterogeneous Bubble Nucleation and Disequlibrium H2O Exsolution in Vesuvius K-phonolite Melts,” J. Volcanol. Geotherm. Res. 175, 278–288 (2008).CrossRefGoogle Scholar
  38. 38.
    J. F. Larsen, M-H. Denis, and J. E. Gadner, “Experimental Study of Bubble Coalescence in Rhyolitic and Phonolitic Melts,” Geochim. Cosmochim. Acta. 68(2), 333–344 (2004).CrossRefGoogle Scholar
  39. 39.
    D. London, Pegmatites, Can. Mineral. Spec. Publ. 10, (2008).Google Scholar
  40. 40.
    D. London, “The Magmatic-Hydrothermal Transition in the Tanco Rare-Element Pegmatite: Evidence from Fluid Inclusions and Phase Equilibrium Experiments,” Am. Mineral. 71, 376–395 (1986).Google Scholar
  41. 41.
    J. B. Lowenstern, “Dissolved Volatile Concentrations in an Ore-Forming Magma,” Geology 22, 893–896 (1994).CrossRefGoogle Scholar
  42. 42.
    V. Lyakhovsky, S. Hurwitz, and O. Navon, “Bubble Growth in Rhyolitic Melts: Experimental and Numerical Investigation,” Bull. Volcanol. 58, 19–32 (1996).CrossRefGoogle Scholar
  43. 43.
    V. I. Mal’kovskii, A. A. Pek, A. P. Aleshin, and V. I. Velichkin, “Estimation of the Time of Magma Chamber Solidification beneath the Strel’tsovka Caldera and Its Effect on the Nonstationary Temperature Distribution in the Upper Crust, the Eastern Transbaikal Region, Russia,” Geol. Rudn. Mestorozhd. 50(3), 217–224 (2008) [Geol. Ore Dep. 50, 192–198 (2008)].Google Scholar
  44. 44.
    D. A. C. Manning and M. Pichavant, “The Role of F and B in the Generation of Granitic Melts,” in Migmatites, Melting and Metamorphism, Ed. by M. P. Atherton and C. D. Gribble, (Shiva Geology Series, Glasgow, 1983).Google Scholar
  45. 45.
    Y. Morizet, A. R. L. Nichols, S. C. Kohn, R. A. Brooker, and D. B. Dingwell, “The Influence of H2O and CO2 on the Glass Transition Temperature: Insights into the Effects of Volatiles on Magma Viscosity,” Eur. J. Mineral. 19, 657–669 (2007).CrossRefGoogle Scholar
  46. 46.
    C. C. Mourtada-Bonnefoi and D. Laporte, “Kinetics of Bubble Nucleation in Rhyolitic Melt: An Experimental Study of Effect of Ascent Rate,” Earth Planet. Sci. Lett. 218, 521–537 (2004).CrossRefGoogle Scholar
  47. 47.
    V. B. Naumov and G. B. Naumov, “Mineral-Forming Fluids and Physicochemical Regularities of their Evolution,” Geokhimiya, No. 10, 1450–1460 (1980).Google Scholar
  48. 48.
    F. A. Ochs and R. A. Lange, “The Density of Hydrous Magmatic Liquids,” Science 283, 1314–1317 (1999).CrossRefGoogle Scholar
  49. 49.
    F. A. Och and R. A. Lange, “The Partial Molar Volume, Thermal Expansivity, and Compressibility of H2O in NaAlSi3O8 Liquid: New Measurements and an Internally Consistent Model,” Contrib. Mineral. Petrol. 179, 155–165 (1997).Google Scholar
  50. 50.
    T. Ohtani, T. Nakano, Y. Nakashima, and H. Muraoka, “Three-Dimension Shape Analysis of Miarolitic Cavities in the Kakkonda Granite by X-Ray Computed Tomography,” J. Struct. Geol. 23, 1441–1754 (2001).CrossRefGoogle Scholar
  51. 51.
    K. E. Perepelkin and V. S. Matveev, Gas Emulsion (Khimiya, Leningrad, 1979) [in Russian].Google Scholar
  52. 52.
    I. S. Peretyazhko, S. Z. Smirnov, V. G. Thomas, and V. Ye. Zagorsky, “Gels and Melt-Like Gels in High-Temperature Endogenous Formation,” in Proceedings of the In. IAGOD Conference, Vladivostok, Russia, 2004 (Vladivostok, 2004a), pp. 306–309.Google Scholar
  53. 53.
    I. S. Peretyazhko, V. Ye. Zagorsky, S. Z. Smirnov, and M. Y. Mikhailov, “Conditions of Pocket Formation in the Oktyabrskaya Tourmaline-Rich Gem Pegmatite (the Malkhan Field, Central Transbaikalia, Russia),” Chem. Geol. 210, 91–111 (2004b).CrossRefGoogle Scholar
  54. 54.
    I. S. Peretyazhko and V. E. Zagorsky, “The Influence of H3BO3 on Fluid Pressure in Granitic Pegmatite Miaroles: A Computation of Isochores and the Density of Boric Acid Solutions,” Dokl. Akad. Nauk 383(6), 812–817 (2002) [Dokl. Earth Sci. 383, 340–345 (2002)].Google Scholar
  55. 55.
    I. S. Peretyazhko, “Inclusions of Magmatic Fluids: P-V-T-X Properties of Aqueous Salt Solutions of Various Types and Petrological Implications,” Petrologiya 17(2), 197–221 (2009) [Petrology 17, 187–201 (2009)].Google Scholar
  56. 56.
    I. S. Peretyazhko, V. Yu. Prokof’ev, V. E. Zagorsky, and S. Z. Smirnov, “Role of Boric Acids in the Formation of Pegmatite and Hydrothermal Minerals: Petrologic Consequences of Sassolite (H3BO3) Discovery in Fluid Inclusions,” Petrologiya 8(3), 241–266 (2000) [Petrology 8, 214–237 (2000)].Google Scholar
  57. 57.
    E. S. Persikov, Viscosity of Magmatic Melts (Nauka, Moscow, 1984) [in Russian].Google Scholar
  58. 58.
    A. R. Philpotts and M. Carroll, “Physical Properties of Partly Melted Tholeiitic Basalt,” Geology 24, 1029–1032 (1996).CrossRefGoogle Scholar
  59. 59.
    P. M. Piccoli, P. A. Candela, P. J. Jugo, and M. R. Frank, “Contrasting Syn-Late Magmatic Intrusive Behavior of Aplite Dikes in the Tuolumne Intrusive Suite, California: Implications for Magma Rheology,” in Cordilleran Section of the Geological Society of America (a Symposium in Honor of Paul Bateman) 28, 101 (1996).Google Scholar
  60. 60.
    M. Pichavant, “An Experimental Study of the Effect of Boron on a Water Saturated Haplogranite at 1 Kbar Vapour Pressure,” Contrib. Mineral. Petrol. 76, 430–439 (1981).CrossRefGoogle Scholar
  61. 61.
    M. Pichavant, “Effects of B and H2O on Liquidus Phase Relations in the Haplogranite System at 1 Kbar,” Am. Mineral. 72, 1056–1070 (1987).Google Scholar
  62. 62.
    F. G. Reif, Ore-Forming Potential of Granites and Conditions of its Realization (Nauka, Moscow, 1990) [in Russian].Google Scholar
  63. 63.
    P. Richet, A. Whittington, F. Holtz, H. Behrens, S. Ohlhorst, and M. Wilke, “Water and the Density of Silicate Glasses,” Contrib. Mineral. Petrol. 138, 337–347 (2000).CrossRefGoogle Scholar
  64. 64.
    B. Scaillet, F. Holtz, M. Pichavant, and M. O. Schmidt, “The Viscosity of Himalayan Leucogranites: Implications for Mechanisms of Granitic Magma Ascent,” J. Geophys. Res. 101, 27691–27699 (1996).CrossRefGoogle Scholar
  65. 65.
    V. N. Sharapov and A. N. Cherepanov, Dynamics of Magma Differentiation (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  66. 66.
    V. N. Sharapov and Yu. A. Averkin, “Dynamics of Heat- and Mass-Exchange in the Orthomagmatic Fluid Systems,” Tr. Ins. Geol. Geofiz., No. 721, (1990) [in Russian].Google Scholar
  67. 67.
    H. R. Shaw, “Viscosities of Magmatic Silicate Liquids: An Empirical Method of Prediction,” Amer. J. Sci. 272, 870–893 (1972).Google Scholar
  68. 68.
    A. G. Simakin, P. Armienti, and M. B. Epel’baum, “Coupled Degassing and Crystallization: Experimental Study at Continuous Pressure Drop, with Application to Volcanic Bombs,” Bull. Volcanol. 61, 275–287 (1999).CrossRefGoogle Scholar
  69. 69.
    A. G. Simakin, P. Armienti, and T. P. Salova, “Joint Degassing and Crystallization: Experimental Study with a Gradual Pressure Release,” Geokhimiya, No. 6, 579–591 (2000) [Geochem. Int.38, 523–534 (2000)].Google Scholar
  70. 70.
    M. C. Sirbescu, E. E. Hartwick, and J. J. Student, “Rapid Crystallization of the Animikie Red Ace Pegmatite, Florence County, Northeastern Wisconsin: Inclusion Microthermometry and Conductive-Cooling Modeling,” Contrib. Mineral. Petrol. 156, 289–305 (2008).CrossRefGoogle Scholar
  71. 71.
    M. Štemprok, D. Dolejš, A. Müller, R. Seltmann, “Textural Evidence of Magma Decompression, Devolatilization and Disequilibrium Quenching: An Example from the Western Krušné Hory/Erzgebirge Granite Pluton,” Contrib. Mineral. Petrol. 155, 93–109 (2008).CrossRefGoogle Scholar
  72. 72.
    R. Thomas and J. D. Webster, “Strong Tin Enrichment in a Pegmatite-Forming Melt,” Mineralium Deposita 35, 570–582 (2000).CrossRefGoogle Scholar
  73. 73.
    J. L. R. Touret, S. Z. Smirnov, I. S. Peretyazhko, V. Ye. Zagorsky, and V. G. Thomas, “Magmatic-Hydrothermal Transition in Tourmaline-Bearing Miarolitic Pegmatites: Hydrosaline Fluids or Silica Gels?,” in International Symposium. Granitic Pegmatites: The State of the Art, Porto, Portugal, 2007 (Proto, 2007), pp. 92–93.Google Scholar
  74. 74.
    J. L. Vigneresse, “The Role of Discontinuous Magma Inputs in Felsic Magma and Ore Generation,” Ore Geol. Rev. 30, 181–216 (2007).CrossRefGoogle Scholar
  75. 75.
    J. L. Vigneresse, “Toward a New Paradigm for Granite Generation,” R. Soc. Edinburgh Trans. Earth Sci. 95, 11–22 (2004).CrossRefGoogle Scholar
  76. 76.
    K. L. Webber, A. U. Falster, W. B. Simmons, and E. E. Foord, “The Role of Diffusion-Controlled Oscillatory Nucleation in the Formation of Line Rock in Pegmatite-Aplite Dikes,” J. Petrol. 38, 1777–1791 (1997).CrossRefGoogle Scholar
  77. 77.
    K. L. Webber, W. B. Simmons, A. U. Falster, and E. E. Foord, “Cooling Rates and Crystallization Dynamics of Shallow Level Pegmatite-Aplite Dikes, San Diego County, California,” Am. Mineral. 84, 708–717 (1999).Google Scholar
  78. 78.
    S. Weizhou, L. Hongfei, Li Huimin, Li Wuxian, and W. Dezi, “The Thermal History of the Miarolitic Granite at Xincun, Fujiian Province, China,” Chin. Sci. Bull. 45, 1991–1995 (2000).CrossRefGoogle Scholar
  79. 79.
    K. Wohletz, L. Civetta, G. Orsi, “Thermal Evolution of the Phlegraean Magmatic System,” J. Volcanol. Geotherm. Res. 91, 381–414 (1999).CrossRefGoogle Scholar
  80. 80.
    V. Ye. Zagorsky and I. S. Peretyazhko, “The Malkhan Granite-Pegmatite System,” Dokl. Akad. Nauk 406(4), 511–515 (2006) [Dokl. Earth Sci. 206, 132–135 (2006)].Google Scholar
  81. 81.
    V. Ye. Zagorsky, I. S. Peretyazhko, and B. M. Shmakina, Miarolitic Pegmatites (Granite Pegmatites; Vol. 3) (Nauka, Novosibirsk, 1999) [in Russian].Google Scholar
  82. 82.
    V. E. Zagorsky and I. S. Peretyazhko, Pegmatites with Precious Stones of the Central Transbaikalia (Nauka, Novosibirsk, 1992) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations