Advertisement

Petrology

, Volume 17, Issue 5, pp 439–475 | Cite as

Age, composition, sources, and geodynamic environments of the origin of granitoids in the northern part of the Ozernaya zone, western Mongolia: Growth mechanisms of the Paleozoic continental crust

  • S. N. Rudnev
  • A. E. Izokh
  • V. P. Kovach
  • R. A. Shelepaev
  • L. B. Terent’eva
Article

Abstract

The paper presents data on the structure, composition, and age of granitoid associations (Tokhtogeshil’skii Complex) composing the Kharanur and Sharatologoi polychronous plutons in the northern part of the Ozernala zone in western Mongolia. The Tokhtogeshil’skii Complex was determined to consist of a number of independent magmatic associations, which were formed at 540–450 Ma, within three age intervals (540–520, 510–485, and 475–450 Ma), have different composition, were derived from different sources, and were emplaced in different geodynamic environments. During the first, island-arc stage (540–520 Ma), high-Al plagiogranites were produced, which belong to tonalite-plagiogranite (531 ± 10 Ma) and diorite (529 ±6 Ma) associations in the Kharanur pluton, low-Al plagiogranites of the tonalite-plagiogranite association (519 ± 8 Ma) in the Sharatologoi pluton, and rocks of the Khirgisnur peridotite-pyroxenite-gabbronorite complex (Kharachulu and Dzabkhan massifs). The rocks of the diorite and plagiogranite associations of the Kharanur pluton have ɛNd(T) from +7.9 to +7.4, TNd(DM) = 0.65 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039. The plagiogranites of the Sharatologoi pluton (tonalite-plagiogranite association) are characterized by ɛNd(T) from +6.5 to +6.6, TNd(DM) = 0.73–0.70 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039, which suggest predominantly juvenile subduction sources of the parental melts at a subordinate role of ancient crustal material. During the second, accretionary stage (510–485 Ma), low-Al plagiogranites of the diorite-tonalite-plagiogranite association of the Sharatologoi pluton (494 ± 10 Ma, M type) were formed. The Sr-Nd isotopic characteristics of these rocks ɛNd(T) = +6.6, (87Sr/86Sr)0 = 0.7039 are analogous to those of the plagiogranitoids of the early type. This suggests that the melted sources were similar in composition. During the third, postcollisional stage (475–450 Ma), rocks of the diorite-granodiorite-granite association were formed (459 ± 10 Ma, type I) in the Kharanur pluton. These rocks have ɛNd(T) = +5.1, TNd(DM) = 0.74 Ga, and (87Sr/86Sr)0 = 0.7096. The parental melts were supposedly derived by means of partial melting of “the Caledonian” juvenile crust with the addition of more ancient crustal material.

Keywords

86Sr Quartz Diorite Deplete Mantle Geodynamic Environment Central Asian Fold Belt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Arth, “Some Trace Elements in Trondhjemites: Their Implications to Magma Genesis and Paleotectonic Settings,” in Trondhjemites, Dacites, and Related Rocks (Elsevier, Amsterdam, 1979; Mir, Moscow, 1983), pp. 123–132.Google Scholar
  2. 2.
    J. G. Arth, F. Barker, Z. E. Peterman, et al., “Geochemistry of the Gabbro-Diorite-Tonalite-Trondhjemite Suite of the Southwest Finland and its Implications for the Origin of Tonalitic and Trondhjemitic Magmas,” J. Petrol. 19, 289–316 (1978).Google Scholar
  3. 3.
    G. A. Babin, A. G. Vladimirov, and S. N. Rudnev, “Geological Structure, Magmatism, and Metamorphism of Gornyaya Shoria as a Typical Region of the Altai-Sayan Fold Area,” in Actual Problems of Geology and Metallogeny of South Siberia (Izd-vo IGiL SO RAN, Novosibirsk, 2001), pp. 18–30 [in Russian].Google Scholar
  4. 4.
    G. Badarch, W. D. Cunningham, B. F. Windley, “A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia,” J. Asian Earth Sci. 21, 87–104 (2002).CrossRefGoogle Scholar
  5. 5.
    I. G. Barash, L. Z. Reznitskii, V. G. Belichenko, et al., “Munkusardyk Granitoid Massif as an Indicator Complex,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of Central Asian Mobile Belt (from Ocean to Continent), Irkutsk, Russia, 2005 (Inst. Geograf. SO RAN, Irkutsk, 2005), Vol. 1, No. 3, pp. 23–26 [in Russian].Google Scholar
  6. 6.
    J. S. Berd and G. E. Lofgren, “Dehydratation Melting and Water-Saturated Melting of Basaltic and Andesitic Greenstones and Amphibolites at 1, 3 and 6.9 kbar,” J. Petrol. 32, 365–401 (1991).Google Scholar
  7. 7.
    N. A. Berzin, R. G. Kolman, N. L. Dobretsov, et al., “Geodynamic Map of the Western Part of the Paleoasian Ocean,” Geol. Geofiz. 35(7–8), 8–28 (1994).Google Scholar
  8. 8.
    L. P. Black, S. L. Kamo, C. M. Allen, et al., “TEMORA 1: A New Zircon Standard for U-Pb Geochronology,” Chem. Geol. 200, 155–170 (2003).CrossRefGoogle Scholar
  9. 9.
    W. V. Boynton, “Cosmochemistry of the Rare Earth Element: Meteorite Studies,” in Rare Earth Element Geochemistry (Elsevier, Amsterdam, 1984).Google Scholar
  10. 10.
    P. R. Castillo, “An Overview of Adakite Petrogenesis,” Chinese Sci. Bull. 51, 257–268 (2006).CrossRefGoogle Scholar
  11. 11.
    M. J. Defant, T. E. Jackson, M. S. Drummond, et al., “The Geochemistry of Young Volcanism throughout West Panama and Southeastern Costa Rica: An Overview,” J. Geol. Soc. 149, 569–579 (1992).CrossRefGoogle Scholar
  12. 12.
    A. B. Dergunov, V. I. Kovalenko, S. V. Ruzhentsev, and V. V. Yarmolyuk, Tectonic, Magmatism, and Metallogeny of Mongolia (Routledge, London, New York, 2001).Google Scholar
  13. 13.
    A. N. Distanova, “Early Paleozoic Granitoid Associations of the Altai-Sayan Fold Area: Their Types and an Indicator Role in the Paleomagnetic Reconstructions,” Geol. Geofiz. 41(9), 1244–1257 (2000).Google Scholar
  14. 14.
    A. N. Distanova, “Structure of Plutons and Compositional Features of the Early Paleozoic Granitoids of the Kaakhem Area, East Tuva,” in Magmatic Complexes of Fold Areas of South Siberia (Nauka, Novosibirsk, 1981), pp. 24–62 [in Russian].Google Scholar
  15. 15.
    M. S. Drummond and M. J. Defant, “A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons,” J. Geophys. Res. 5, 21503–21521 (1990).CrossRefGoogle Scholar
  16. 16.
    M. S. Drummond, M. J. Defant, P. K. Kepezhinskas, et al., “Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas,” Trans. R. Soc. Edinburgh, Earth Sci. 87, 205–215 (1996).Google Scholar
  17. 17.
    B. R. Frost, C. G. Barnes, W. J. Collins, et al., “A Geochemical Classification for Granitic Rocks,” J. Petrol. 42, 2033–2048 (2001).CrossRefGoogle Scholar
  18. 18.
    Gabbroid Associations in Western Mongolia, Ed. by V. A. Kutolin (Nauka, Novosibirsk, 1990) [in Russian].Google Scholar
  19. 19.
    A. S. Gibsher, E. V. Khain, A. B. Kotov, et al., “Late Vendian Age of the Khantaishir Ophiolite Complex of Western Mongolia,” Geol. Geofiz. 42(8), 1179–1185 (2001).Google Scholar
  20. 20.
    S. J. Goldstein and S. B. Jacobsen, “Nd and Sr Isotopic Systematics of Rivers Water Suspended Material: Implications for Crustal Evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).CrossRefGoogle Scholar
  21. 21.
    I. V. Gordienko, “Geodynamic Evolution of Late Baikalides and Paleozoides in Folded Structures Framing the Siberian Platform,” Geol. Geofiz. 47(1), 53–70 (2006).Google Scholar
  22. 22.
    Granitoid and Alkaline Formations in Structures of Western and Northern Mongolia, Ed. by I. V. Luchitskii (Nauka, Moscow, 1975) [in Russian].Google Scholar
  23. 23.
    A. E. Izokh, A. V. Vishnevskii, V. M. Kalugin, et al., “Petrology and Geodynamic Position of the Urengoi Picrite Volcanoplutonic Association (Western Mongolia),” in Proceedings of Conference on Geodynamic Evolution of Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent), Irkutsk, Russia, 2007, (Inst. Zemnoi Kory SO RAN, Irkutsk, 2007), Vol. 1, No. 5, pp. 89–91 [in Russian].Google Scholar
  24. 24.
    A. E. Izokh, G. V. Polyakov, A. S. Gibsher, et al., “Aluminous Layered Gabbroids of Central Asian Fold Belt: Geochemical Features, Sm-Nd Isotopic Age, and Geodynamic Conditions of the Formation,” Geol. Geofiz. 39(11), 1565–1577 (1998).Google Scholar
  25. 25.
    A. E. Izokh, O. M. Turkina, and G. V. Polyakov, “Stages of the Island Arc Magmatism of the Southern Framing of the Siberian Craton: Problems of Indicator Magmatic Complexes,” in Proceedings of Conference on Geodynamic Evolution of Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent), Irkutsk, Russia, 2003, (Inst. Geograf. SO RAN, Irkutsk, 2003), pp. 110–113 [in Russian].Google Scholar
  26. 26.
    A. E. Izokh, S. A. Kargopolov, R. A. Shelepaev, et al., “Basite Magmatism of the Cambrian Stage of the Altai-Sayan Fold Area and Its Relation with High-Temperature and Low-Pressure Metamorphism,” in Proceedings of Scientific Conference on Actual Problems of Geology and Metallogeny of South Siberia, (IGIiL SO RAN, Novosibirsk, 2001), pp. 68–72 [in Russian].Google Scholar
  27. 27.
    S. B. Jacobsen and G. J. Wasserburg, “Sm-Nd Evolution of Chondrites and Achondrites,” Earth Planet. Sci. Lett. 67, 137–150 (1984).CrossRefGoogle Scholar
  28. 28.
    B. M. Jahn, “The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic,” in Aspects of the Tectonic Evolution of China, Ed. by J. Malpas, C. J. N. Fletcher, and J. C. Aitchison, Geol. Soc. London Spec. Publ. 226, 73–100 (2004).Google Scholar
  29. 29.
    B. M. Jahn, F. Wu, and B. Chen, “Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic,” Trans. R. Soc. Edinburgh, 91, 181–193 (2000a).Google Scholar
  30. 30.
    B. M. Jahn, F. Wu, and B. Chen, “Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic,” Episodes 23, 82–92 (2000b).Google Scholar
  31. 31.
    S. Keto and S. B. Jacobsen, “Nd and Sr Isotopic Variations of Early Paleozoic Oceans,” Earth Planet. Sci. Lett. 84, 27–41 (1987).CrossRefGoogle Scholar
  32. 32.
    E. V. Khain, Yu. V. Amelin, and A. E. Izokh, “Sm-Nd Age Data on Ultrabasic-Basic Complexes in the Subduction Zone of Western Mongolia,” Dokl. Akad. Nauk 341(6), 791–796 (1995).Google Scholar
  33. 33.
    E. G. Konnikov, A. S. Gibsher, A. E. Izokh, et al., “Early Proteorozoic-Early Paleozoic Evolution of the Northern Segment of the Paleoasian Ocean,” Geol. Geofiz. 35(7–8), 103–135 (1994).Google Scholar
  34. 34.
    V. P. Kovach, V. V. Yarmolyuk, V. I. Kovalenko, et al., “Sources and Leading Mechanisms of the Formation and Evolution of the Continental Crust of Caledonides of Central Asia,” in Geodynamic Evolution of Lithosphere of Central Asian Mobile Bely (from Ocean to Continent) (Inst. Geografii SO RAN, Irkutsk, 2004), Vol. 1, pp. 168–171 [in Russian].Google Scholar
  35. 35.
    V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, et al., “Isotope Provinces, Mechanism of Generation and Sources of the Continental Crust in the Central Asia Mobile Belt,” J. Asian Earth Sci. 23, 605–627 (2004).CrossRefGoogle Scholar
  36. 36.
    V. I. Kovalenko, V. V. Yarmolyuk, E. B. Sal’nikova, et al., “The Khaldzan-Buregtei Massif of Peralkaline Rare-Metal Igneous Rocks: Structure, Geochronology, and Geodynamic Setting in the Caledonides of Western Mongolia,” Petrologiya 12(5), 467–494 (2004) [Petrology 12, 412–436 (2004)].Google Scholar
  37. 37.
    V. I. Kovalenko, V. V. Yarmolyuk, I. K. Kozakov, et al., “Sm-Nd Isotope Provinces of the Earth’s Crust in Central Asia,” Doklady Akad. Nauk 348(2), 220–222 (1996b) [Dokl. Earth Sci. 348, 559–561 (1996b)]Google Scholar
  38. 38.
    V. I. Kovalenko, V. V. Yarmolyuk, I. S. Pukhtel’, et al., “Igneous Rocks and Magma Sources of the Ozernaya Zone Ophiolites, Mongolia,” Petrologiya 4(5), 453–495 (1996c) [Petrology 4, 420–459 (1996c)].Google Scholar
  39. 39.
    V. I. Kovalenko, V. V. Yarmolyuk, O. Tomurtogo, et al., “Geodynamics and Crust-Forming Processes in the Early Caledonides of the Bayanhongor Zone, Central Mongolia,” Geotektonika, No. 4, 55–76 (2005) [Geotectonics 39, 298–316 (2005)].Google Scholar
  40. 40.
    V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, et al., “Sources of Phanerozoic Granitoids in Central Asia: Sm-Nd Isotope Data,” Geokhimiya, No. 8, 699–712 (1996a) [Geochem. Int. 34, 628–640 (1996a)].Google Scholar
  41. 41.
    V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, et al., “Magmatism and Geodynamics of the Early Caledonian Structures of the Central Asian Fold Belt: Isotopic and Geological Data,” Geol. Geofiz. 44(12), 1280–1293 (2003).Google Scholar
  42. 42.
    P. F. Kovalev, G. I. Dobryanskii, G. K. Shnai, et al., “Charash Complex—A Petrotype of High-Al Low-Fe Plagiogranites,” Otechestvennaya Geologiya, No. 11, 38–42 (1997).Google Scholar
  43. 43.
    I. K. Kozakov, E. B. Sal’nikova, E. V. Bibikova, et al., “Polychronous Evolution of the Paleozoic Granitoid Magmatism in the Tuva-Mongolia Massif: U-Pb Geochronological Data,” Petrologiya 7(6), 631–643 (1999) [Petrology 7, 592–601 (1999)].Google Scholar
  44. 44.
    I. K. Kozakov, E. B. Sal’nikova, E. V. Khain, et al., “Early Caledonian Crystalline Rocks of the Lake Zone in Mongolia: Formation History and Tectonic Settings as Deduced from U-Pb and Sm-Nd Datings,” Geotektonika, No. 2, 80–92 (2002) [Geotectonics 36, 156–166 (2002)].Google Scholar
  45. 45.
    I. K. Kozakov, E. B. Sal’nikova, V. I. Kovalenko, et al., “The Age of Postcollisional Magmatism in the Early Caledonides of Central Asia, with the Tuva Region as an Example,” Dokl. Akad. Nauk 360(4), 514–517 (1998) [Dokl. Earth Sci. 360, 510–513 (1998)].Google Scholar
  46. 46.
    A. V. Kravtsev, A. E. Izokh, and A. B. Tsukernik, “Intrusive Magmatism of the Ozernaya Zone, Mongolia,” in Lithotectonic Complexes of Southeastern Tuva (IGiG SO RAN, Novosibirsk, 1989), pp. 26–44 [in Russian].Google Scholar
  47. 47.
    N. N. Kruk, S. N. Rudnev, S. P. Shokal’skii, et al., “Age and Tectonic Position of Plagiogranites of the Sarakokshinskii Massif (Gornyi Altai),” Litosfera, No. 6, 137–146 (2007).Google Scholar
  48. 48.
    H. Kuno, “Lateral Variation of Basalt Magma across Continental Margins and Island Areas,” Bull. Volcanol. 29, 195–222 (1966).CrossRefGoogle Scholar
  49. 49.
    A. B. Kuz’michev, Tectonic Evolution of the Tuva-Mongolia Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages (Probel, Moscow, 2004) [in Russian].Google Scholar
  50. 50.
    V. I. Lebedev, A. G. Vladimirov, V. A. Khalilov, et al., “U-Pb Dating and Problem of Subdivision of the Precambrian-Early Paleozoic Metamorphic Complexes of Western Sangilen,” Geol. Geofiz., No. 7, 45–52 (1993).Google Scholar
  51. 51.
    E. F. Letnikova, T. V. Donskaya, and S. I. Shkol’nik, “Reconstruction of the Northern Boundary of the Tuva-Mongolian Microcontinent,” Dokl. Akad. Nauk 382(2), 238–241 (2002) [Dokl. Earth Sci. 382, 52–55 (2002)].Google Scholar
  52. 52.
    M. V. Luchitskaya, Tonalite-Trondhjemite Complexes of the Koryak-Kamchatka Region: Geology and Geodynamics (GEOS, Moscow, 2001) [in Russian].Google Scholar
  53. 53.
    K. R. Ludwig, “SQUID 1.00. A User’s Manual,” Berkley Geochronol. Center Spec. Publ., No. 2, (2000).Google Scholar
  54. 54.
    K. R. Ludwig, “User’s Manual for Isoplot/Ex, Version 2.10, A Geochronological Toolkit for Microsoft Excel,” Berkeley Geochronol. Center Spec. Publ., No. 1a, (1999).Google Scholar
  55. 55.
    N. G. Markova, M. N. Korobkov, and Z. A. Zhuravleva, “Vendian-Cambrian Sediments in Southwestern Mongolia,” Byull. Mosk. O-va Ispyt. Prir., Otd. Geol. 47(1), 25–44 (1972).Google Scholar
  56. 56.
    H. Martin, “Archean Grey Gneisses and the Genesis of Continental Crust,” in Archean Crustal Evolution (Elsevier, Amsterdam, 1994).Google Scholar
  57. 57.
    H. Martin, R. H. Smithes, R. Rapp, et al., “An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implication for Crustal Evolution,” Lithos 79, 1–24 (2005).CrossRefGoogle Scholar
  58. 58.
    A. A. Mongush, V. P. Kovach, E. B. Sal’nikova, et al., “Early Cambrian Volcanoplutonic Association of the Eastern Tannu-Ola Ridge (Tuva): Geology, Geodynamic Setting,” in Proceedings of Conference on Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent)” (Inst. zemnoi kory SO RAN, Irkutsk, 2006), Vol. 2, pp. 41–44 [in Russian].Google Scholar
  59. 59.
    A. A. Mossakovskii, S. V. Ruzhentsev, S. G. Samygin, and T. N. Kheraskova, “Central Asian Fold Belt: Geodynamic Evolution and History of Formation,” Geotektonika, No. 6, 3–32 (1993).Google Scholar
  60. 60.
    Paleozoic Granitoid Magmatism of the Central Asian Fold Belt, Ed. by, B.G. Lutts (Nauka, Novosibirsk, 1981) [in Russian].Google Scholar
  61. 61.
    Plutonic Associations of Tuva and Their Ore Potential, Ed. by G. V. Polyakov (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  62. 62.
    G. V. Polyakov, V. I. Bognibov, A. E. Izokh, et al., “Peridotite-Pyroxenite-Gabbronorite Formation of Eastern Tuva and Northwestern Mongolia,” in Plutonic Formations of Tuva and Their Ore Potential, (Nauka, Novosibirsk, 1984), pp. 3–57 [in Russian].Google Scholar
  63. 63.
    Early Paleozoic Granitoid Formation of the Kuznetsk Alatau, Ed. by Yu. A. Kuznetsov (Nauka, Moscow, 1971) [in Russian].Google Scholar
  64. 64.
    R. P. Rapp and E. B. Watson, “Dehydratation Melting of Metabasalt at 8–32 Kbar: Implications for Continental Growth and Crust-Mantle Recycling,” J. Petrol. 36, 891–931 (1995).Google Scholar
  65. 65.
    R. P. Rapp, E. B. Watson, and C. F. Miller, “Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites,” Precambrian Res. 51, 1–25 (1991).CrossRefGoogle Scholar
  66. 66.
    P. Richard, N. Shimizu, and C. J. Allegre, “143Nd/144Nd a Natural Tracer: An Application to Oceanic Basalts,” Earth Planet. Sci. Lett. 31, 269–278 (1976).CrossRefGoogle Scholar
  67. 67.
    S. N. Rudnev, A. E. Izokh, V. P. Kovach, et al., “Formation Stages, Geodynamic Setting, and Sources of the Early Paleozoic Granitoids from the Northern Part of the Ozernaya Zone, Western Mongolia,” in Proceedings of the Conference on the Geodynamic Evolution of the Lithosphere at the Central-Asian Mobile Belt (from Ocean to Continent), Irkutsk, Russia, 2005 (Inst. Zemnoi Kory SO RAN, Irkutsk, 2007b) [in Russian].Google Scholar
  68. 68.
    S. N. Rudnev, A. G. Vladimirov, V. A. Ponomarchuk, et al., “Kaakhemskii Polychronous Granite Batholith (E. Tuva): Composition, Age, Sources, and Geodynamic Setting,” Litosfera, No. 2, 3–33 (2006).Google Scholar
  69. 69.
    S. N. Rudnev, A. G. Vladimirov, V. A. Ponomarchuk, et al., “Early Paleozoic Granitoid Batholiths of the Altai-Sayan Folded Region (Lateral-Temporal Zoning and Sources),” Dokl. Akad. Nauk 396(3), 369–373 (2004) [Dokl. Earth Sci. 396, 492–495 (2004)].Google Scholar
  70. 70.
    S. N. Rudnev, G. A. Babin, A. G. Vladimirov, et al., “Geological Setting, Age, and Geochemical Model of the Formation of Island Arc Plagiogranites of Western Sayan,” Geol. Geofiz. 46(2), 170–187 (2005a).Google Scholar
  71. 71.
    S. N. Rudnev, N. N. Kruk, and M. L. Kuibida, “Plagiogranites of the Altai-Sayan Fold Area: Age Boundaries, Composition, and Melt Sources,” in Proceedings of Conference on Geodynamic Evolution of Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent), Irkutsk, Russia, 2005 (Inst. Zemnoi Kory SO RAN, Irkutsk, 2005b) [in Russian].Google Scholar
  72. 72.
    S. N. Rudnev, S. M. Borisov, G. A. Babin, et al., “Early Paleozoic Batholiths in the Northern Part of the Kuznetsk Alatau: Composition, Age, and Sources,” Petrologiya 16(4), 421–448 (2008) [Petrology 16, 395–420 (2008)].Google Scholar
  73. 73.
    S. N. Rudnev, V. A. Ponomarchuk, V. Yu. Kiseleva, et al., “Sr Isotopes in the Granitoids of the Kaa-Khem Granitoid Batholith, Eastern Tuva,” in Proceedings of 18th Vinogradov International Symposium on IsotopeGeochemistry, Moscow, Russia, 2007 (GEOKhI, Moscow, 2007a), pp. 229–230 [in Russian].Google Scholar
  74. 74.
    F. G. Sajona, R. S. Maury, H. Bellon, et al., “Initiation of Subduction and Generation of Slab Melt in Western and Eastern Mindanao, Philippines,” Geology 21, 1007–1010 (1993).CrossRefGoogle Scholar
  75. 75.
    A. M. J. Shenger, B. A. Natal’in, and V. S. Burtman, “Tectonic Evolution of Altaides,” Geol. Geofiz. 35(7–8), 41–58 (1994).Google Scholar
  76. 76.
    S. P. Shokal’skii, G. A. Babin, A. G. Vladimirov, et al., Correlation of Magmatic and Metamorphic Complexes of the Western Altai-Sayan Fold Area (Izd-vo SO RAN, Filial “GEO”, Novosibirsk, 2000) [in Russian].Google Scholar
  77. 77.
    V. I. Sotnikov, V. A. Ponomarchuk, D. O. Shevchenko, et al., “Aksugsk Porphyry Deposit in Northeastern Tuva: 40Ar/39Ar Geochronology and Material Sources,” Geol. Geofiz. 44(11), 1119–1132 (2003).Google Scholar
  78. 78.
    S. R. Taylor and S. M. McLennan, “The Continental Crust: Its Evolution and Composition“ (Blackwell, London, 1985).Google Scholar
  79. 79.
    Tectonics of the Mongolian People’s Republic, Ed. by V. A. Kutolin (Nauka, Moscow, 1974) [in Russian].Google Scholar
  80. 80.
    Trondhjemites, Dacites, and Related Rocks Ed. by F. Barker (Elsevier, Amsterdam, 1979; Mir, Moscow, 1983).Google Scholar
  81. 81.
    A. B. Tsukernik, Yu. G. Ivanov, A. V. Kravtsev, et al., Geological Map of the Mongolian People’s Republic, Scale 1: 200000. Sheet M-46-XXVIII (Hirgis-Bur Lake) (Tekhnoeksport, Moscow, 1982a) [in Russian].Google Scholar
  82. 82.
    A. B. Tsukernik, Yu. G. Ivanov, A. V. Kravtsev, et al., Geological Map of the Mongolian People’s Republic, Scale 1: 200000. Sheet M-46-XXXIV (Durbelchzhin-Samon) (Tekhnoeksport, Moscow, 1982b) [in Russian].Google Scholar
  83. 83.
    A. A. Tsygankov, Magmatic Evolution of the Baikal-Muya Volcanoplutonic Belt in the Late Precambrian, (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2005) [in Russian].Google Scholar
  84. 84.
    O. M. Turkina, “Modeling Geochemical Types of Tonalite-Trondhjemite Melts and Their Natural Equivalents,” Geokhimiya, No. 7, 704–717 (2000) [Geochem. Int. 38, 640–651 (2000)].Google Scholar
  85. 85.
    O. M. Turkina, “Tonalite-Trondhjemite Complexes of Suprasubduction Settings: An Example of Late Riphean Plagiogranitoids in the SW Margin of the Siberian Platform,” Geol. Geofiz. 43(5), 420–433 (2002).Google Scholar
  86. 86.
    O. M. Turkina, A. D. Nozhkin, E. V. Bibikova, et al., “Arzybei Terrane—A Fragment of the Meosoproterozoic Island Arc Crust in the Southwestern Framing of the Siberian Craton,” in Proceedings of Conference on Geodynamic Evolution of Lithosphere of Central-Asian Mobile Belt (from Ocean to Continent), Irkutsk, Russia, 2003 (Inst. Zemnoi Kory SO RAN, Irkutsk, 2003), pp. 249–252 [in Russian].Google Scholar
  87. 87.
    V. G. Vladimirov, A. G. Vladimirov, A. S. Gibsher, et al., “Model of the Tectonometamorphic Evolution for the Sangilen Block (Southeastern Tuva, Central Asia) as a Reflection of the Early Caledonian Accretion-Collision Tectogenesis,” Dokl. Akad. Nauk 405(1), 82–88 (2005) [Dokl. Earth Sci. 405, 1159–1165 (2005)].Google Scholar
  88. 88.
    A. G. Vladimirov, A. P. Ponomareva, and S. N. Rudnev, “Intrusive Magmatism of the Western and Central Sangilem Transition Zone,” in Lithotectonic Complexes of Southeastern Tuva (IGiG SO AN SSSR, Novosibirsk, 1989), pp. 57–87 [in Russian].Google Scholar
  89. 89.
    A. G. Vladimirov, A. S. Gibsher, A. E. Izokh, and S. N. Rudnev, “Early Paleozoic Granitoid Batholiths of Central Asia: Abundance, Sources, and Geodynamic Formation Conditions,” Dokl. Akad. Nauk 369(6), 795–798 (1999) [Dokl. Earth Sci. 369, 1268–1271 (1999)].Google Scholar
  90. 90.
    A. G. Vladimirov, M. S. Kozlov, S. P. Shokal’skii, et al., “Main Age Boundaries of Intrusive Magmatism in the Kuznetsk Alatau, Altai, and Kalba: Evidence from U-Pb Isotopic Dating,” Geol. Geofiz. 42(8), 1149–1170 (2001).Google Scholar
  91. 91.
    A. G. Vladimirov, N. N. Kruk, V. G. Vladimirov, et al., “Synkinematic Granites and Collisional-Strike-Slip Deformations of the Western Sangilen, Southeastern Tuva,” Geol. Geofiz., No. 3, 396–411 (2000).Google Scholar
  92. 92.
    I. S. Williams, “U-Th-Pb Geochronology by Ion Microprobe,” in Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Ed. by M. A. McKibben, W. C. Shanks, W. I Ridley, Rev. Econ. Geol. 7, 1–35 (1998).Google Scholar
  93. 93.
    V. V. Yarmolyuk, V. I. Kovalenko, V. P. Kovach, et al., “Geodynamics of Caledonides in the Central Asian Foldbelt,” Doklady Akad. Nauk 389(3), 354–359 (2003) [Dokl. Earth Sci. 389, 311–316 (2003)].Google Scholar
  94. 94.
    V. V. Yarmolyuk, V. I. Kovalenko, V. P. Kovach, et al., “I Isotopic Composition, Sources of Crustal Magmatism, and Crustal Structure of Caledonides of the Ozernaya Zone, Central Asian Foldbelt,” Dokl. Akad. Nuak 387(3), 387–392 (2002) [Dokl. Earth Sci. 387, 1043–1047 (2002)].Google Scholar
  95. 95.
    V. V. Yarmolyuk, V. I. Kovalenko, V. P. Kovach, et al., “Early Stages of the Paleoasian Ocean Formation: Results of Geochronological, Isotopic, and Geochemical Investigations of Late Riphean and Vendian-Cambrian Complexes in the Central Asian Foldbelt,” Dokl. Akad. Nauk 410(5), 657–662 (2006) [Dokl. Earth Sci. 410, 1184–1189 (2006)]Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. N. Rudnev
    • 1
  • A. E. Izokh
    • 1
  • V. P. Kovach
    • 2
  • R. A. Shelepaev
    • 1
  • L. B. Terent’eva
    • 2
  1. 1.Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations