Advertisement

Petrology

, 17:389 | Cite as

Fluid flows in regional deformation zones

  • L. Ya. Aranovich
  • N. S. Bortnikov
  • S. A. Bushmin
  • O. V. Vikent’eva
  • E. O. Dubinina
  • V. M. Kozlovskii
  • Yu. M. Lebedeva
Article

Abstract

This paper considers petrogenetic processes related to the influence of fluid flows on rocks in regional deformation zones at different depth levels within the Earth’s crust. It was shown that silica mobility could be important for eclogites developing after (meta)gabbroids: in the absence of quartz, the main eclogitic minerals, garnet and omphacite, are stabilized to significantly lower pressures compared with the quartz-saturated system. Based on petrological data and the analysis of oxygen isotope distribution in coexisting minerals from the hypersthene-sillimanite Mg-Al-Si granulites of Palenyi Island (Por’ya Guba of the Lapland granulite belt), it was concluded that these rocks were formed at high temperature and pressure (approximately 900°C and 10 kbar) under the influence of an external fluid. The influence of the fluid flow had to be rather short and spatially nonuniform.

Keywords

Isotopic Composition Oxygen Isotope Isotopic Exchange Sillimanite Oxygen Isotope Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. J. Ague, “Fluid Infiltration and Transport of Major, Minor and Trace Elements during Regional Metamorphism of Carbonate Rocks, Wepawaug Schist, Connecticut, USA,” Am. J. Sci. 303, 753–816 (2003).CrossRefGoogle Scholar
  2. 2.
    L. Y. Aranovich, “Granulite-Facies Fluids: Physicochemical Aspect,” in Granulite Complexes in Precambrian and Phanerozoic Geologic Evolution (IGGD RAN, St. Petersburg, 2007), pp. 35–39 [in Russian].Google Scholar
  3. 3.
    L. Y. Aranovich and R. G. Berman, “Optimized Standard State and Solution Properties of Minerals: II. Calculation of Phase Diagrams and Geothermobarometry Applications,” Contrib. Mineral. Petrol. 126, 23–32 (1996).CrossRefGoogle Scholar
  4. 4.
    L. Ya. Aranovich and V. M. Kozlovskii, “The Role of Silica Mobility in the Formation of ‘Incipient’ Eclogites,” Geokhimiya, No. 2, 210–215 (2009) [Geochem. Int. 47, 199–204 (2009)].Google Scholar
  5. 5.
    L. Y. Aranovich and R. C. Newton, “H2O Activity in Concentrated NaCl Solutions at High Pressures and Temperatures Measured by the Brucite-Periclase Equilibrium,” Contrib. Mineral. Petrol. 125, 200–212 (1996).CrossRefGoogle Scholar
  6. 6.
    L. Y. Aranovich and R. C. Newton, “H2O Activity in Concentrated KCl and KCl-NaCl Solutions at High Temperatures and Pressures Measured by the Brucite-Periclase Equilibrium,” Contrib. Mineral. Petrol. 127, 261–271 (1997).CrossRefGoogle Scholar
  7. 7.
    L. Ya. Aranovich, K. K. Shmulovich, and V. V. Fed’kin, “Specifics of H2O and CO2 Regime during Regional Metamorphism,” in Sketches in Physicochemical Petrology (Nauka, Moscow, 1987), No. 14, pp. 96–117.Google Scholar
  8. 8.
    H. Austrheim, “The Granulite-Eclogite Facies Transition: A Comparison of Experimental Work and a Natural Occurrence in the Bergen Arcs, Western Norway,” Lithos 25, 163–169 (1990).CrossRefGoogle Scholar
  9. 9.
    H. Austrheim and W. L. Griffin, “Shear Deformation and Eclogite Formation within Granulite-Facies Anorthosites of the Bergen Arcs, Western Norway,” Chem. Geol. 50, 267–281 (1985).CrossRefGoogle Scholar
  10. 10.
    V. V. Balagansky and V. A. Glebovitsky, “Lapland Granulite and Tanaelv Belts,” in Early Precambrian of the Baltic Shield (Nauka, St. Petersburg, 2005), pp. 127–175 [in Russian].Google Scholar
  11. 11.
    R. G. Berman and L. Y. Aranovich, “Optimized Standard State and Solution Properties of Minerals: I. Model Calibration for Olivine, Orthopyroxene, Cordierite, Garnet, and Ilmenite in the System FeO-MgO-CaO-Al2O3-TiO2-SiO2,” Contrib. Mineral. Petrol. 126, 1–22 (1996).CrossRefGoogle Scholar
  12. 12.
    R. G. Berman, L. Y. Aranovich, and D. R. M. Pattison, “Reassessment of the Garnet-Clinopyroxene Fe-Mg Exchange Thermometer: II. Thermodynamic Analysis,” Contrib. Mineral. Petrol. 119, 30–42 (1995).CrossRefGoogle Scholar
  13. 13.
    N. S. Bortnikov, G. K. Gamyanin, O. V. Vikent’eva, et al., “Fluid Composition and Origin in the Hydrothermal System of the Nezhdaninsky Gold Deposit, Sakha (Yakutia), Russia,” Geol Rudn. Mestorozhd. 49(2), 99–145 (2007) [Geol. Ore. Dep. 49, 87–128 (2007)]Google Scholar
  14. 14.
    Y. Bottinga and M. Javoy, “Comments on Oxygen Isotope Geofhermometry,” Earth Planet. Sci. Lett. 20, 250–265 (1973).CrossRefGoogle Scholar
  15. 15.
    J.-P. Burg and T. V. Gerya, “The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens: Thermomechanical Models and Application to the Lepontine Dome in the Central Alps,” J. Metamorph. Geol. 23, 75–95 (2005).CrossRefGoogle Scholar
  16. 16.
    S. A. Bushmin, D. V. Dolivo-Dobrovolsky, and Yu. M. Lebedeva, “Infiltration Metasomatism under High-Pressure Granulite-Facies Conditions Based on Orthopyroxene-Sillimanite Rocks in Shear Zones of the Lapland Granulite Belt,” Dokl. Akad. Nauk 412(3), 383–387 (2007) [Dokl. Earth Sci. 412, 106–109 (2007)].Google Scholar
  17. 17.
    J. A. D. Connolly and Y. Y. Podladchikov, “Compaction-Driven Fluid Flow in Viscoelastic Rock,” Geodinamica Acta 11, 55–84 (1998).CrossRefGoogle Scholar
  18. 18.
    J. A. D. Connolly and Y. Y. Podladchikov, “Fluid Flow in Compressive Tectonic Settings: Implications for Mid-Crustal Seismic Reflectors and Downward Fluid Migration,” J. Geophys. Res. 109, B04201 (2004).CrossRefGoogle Scholar
  19. 19.
    R. A. Cox and A. Indares, “Transformation of Fe-Ti Gabbro to Coronite, Eclogite and Amphibolite in the Baie du Nord Segment, Manicouagan Imbricate Zone, Eastern Grenville Province,” J. Metamorph. Geol. 17, 537–555 (1999).CrossRefGoogle Scholar
  20. 20.
    E. O. Dubinina and L. Z. Lakshtanov, “A Kinetic Model of Exchange in Dissolution-Precipitation Processes,” Geochim. Cosmochim. Acta 61, 2265–2273 (1997).CrossRefGoogle Scholar
  21. 21.
    Early Precambrian of the Baltic Shield, Ed. by V. A. Glebovitsky (Nauka, St. Petersburg, 2005) [in Russian].Google Scholar
  22. 22.
    W. S. Fyfe, “The Granulite Facies, Partial Melting and the Archean Crust,” Philos. Trans. R. Soc. London 273, 457–461 (1973).CrossRefGoogle Scholar
  23. 23.
    R. T. Gregory and R. E. Criss, “Isotopic Exchange in Open and Closed Systems,” Rev. Mineral. Geochem. 16, 91–127 (1986).Google Scholar
  24. 24.
    B. Jamtveit, H. Austrheim, and A. Malthe-Sorenssen, “Accelerated Hydration of the Earth’s Deep Crust Induced by Stress Perturbations,” Nature 408, 75–78 (2000).CrossRefGoogle Scholar
  25. 25.
    A. S. Janardhan, R. C. Newton, and E. C. Hansen, “The Transformation of Amphibolite Facies Gneiss to Charnockite in Southern Karnataka and Northern Tamil Nadu, India,” Contrib. Mineral. Petrol. 79, 130–149 (1982).CrossRefGoogle Scholar
  26. 26.
    Y. Jia, R. Kerrich, A. K. Gupta, and W. S. Fyfe, “15N-Enriched Gondwana Lamproites, Eastern India: Crustal N in the Mantle Source,” Earth Planet. Sci. Lett. 215, 43–56 (2003).CrossRefGoogle Scholar
  27. 27.
    R. Kerrich, “Fluid Infiltration into Fault Zones: Chemical, Isotopic, and Mechanical Effects,” Paleophysics 124, 225–268 (1986).Google Scholar
  28. 28.
    S. P. Korikovsky, “Pressure Effect on the Stability and Assemblages of Acid Plagioclase in Medium-Temperature Metabasites, Eclogites and Associated Gneisses,” Geologica Carpathica 50, 115–117 (1999).Google Scholar
  29. 29.
    S. P. Korikovsky, “Reaction Phase Equilibria during Recrystallization of the Paleoproterozoic Gabbronorites of the Belomorian Complex under Conditions Close to Amphibolite-Eclogite Facies Conditions,” in Proceedings of Conference Belomorian Mobile Belt and Its Analogues: Geology, Geochronology, Geodynamics, and Metallogeny (Karel’skii NTs RAN, Petrozavodsk, 2005), pp. 189–191 [in Russian].Google Scholar
  30. 30.
    D. S. Korzhinskii, Factors of Mineral Equilibria and Mineralogical Depth Facies (Akad. Nauk SSSR, Moscow, 1940) [in Russian].Google Scholar
  31. 31.
    D. S. Korzhinskii, Physicochemical Principles of Analysis of Mineral Assemblages (Akad. Nauk SSSR, Moscow, 1957) [in Russian].Google Scholar
  32. 32.
    N. E. Kozlova, V. V. Balaganskii, M. N. Bogdanova, and S. A. Rezhenova, “Structural-Petrological Study of Orthopyroxene-Sillimanite Assemblages of the Lapland Granulites,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 4, 66–76 (1991).Google Scholar
  33. 33.
    V. M. Kozlovsky and L. Ya. Aranovich, “Geological and Structural Conditions of Eclogitization of Paleoproterozoic Basic Dikes in the Eastern Belomorian Mobile Belt,” Geotektonika, No. 4, 70–84 (2008) [Geotectonics 42, 305–317 (2008)].Google Scholar
  34. 34.
    C. E. Manning, “The Solubility of Quartz in the Lower Crust and Upper Mantle,” Geochim. Cosmochim. Acta 58, 4831–4839 (1994).CrossRefGoogle Scholar
  35. 35.
    J.-F. Moyen, G. Stevens, and A. Kisters, “Record of Mid-Archean Subduction from Metamorphism in the Barberton Terrain, South Africa,” Nature 442, 559–562 (2006).CrossRefGoogle Scholar
  36. 36.
    R. Nair and T. Chacko, “Fluid-Absent Melting of High-Grade Semi-Pelites: P-T Constraints on Orthopyroxene Formation and Implications for Granulite Genesis,” J. Petrol. 43, 2121–2143 (2002).CrossRefGoogle Scholar
  37. 37.
    R. C. Newton and C. E. Manning, “Quartz Solubility in H2O-NaCl and H2O-CO2 Solutions at Deep Crust-Upper Mantle Pressures and Temperatures: 2–15 kbar and 500–900°C,” Geochim. Cosmochim. Acta 64, 2993–3005 (2000).CrossRefGoogle Scholar
  38. 38.
    R. C. Newton, J. V. Smith, and B. F. Windley, “Carbonic Metamorphism, Granulites and Crustal Growth,” Nature 288, 45–50 (1980).CrossRefGoogle Scholar
  39. 39.
    R. C. Newton, L. Y. Aranovich, E. G. Hansen, and B. A. Vandenheuvel, “Hypersaline Fluids in Precambrian Deep-Crustal Metamorphism,” Precambrian Res. 38, 21–34 (1998).Google Scholar
  40. 40.
    J. R. O’Neil and H. P. Taylor, Jr., “The Oxygen Isotope and Cation Exchange Chemistry of Feldspars,” Am. Mineral. 52, 1414–1437 (1967).Google Scholar
  41. 41.
    A. L. Perchuk, “Eclogites of the Bergen Arcs Complex, Norway: Petrology and Mineral Chronometry,” Petrologiya 10(2), 115–137 (2002) [Petrology 10, 99–118 (2002)].Google Scholar
  42. 42.
    A. L. Perchuk and L. Ya. Aronovich, “Thermodynamics of Jadeite-Diopside-Hedenbergite Solid Solution,” Geokhimiya, No. 4, 539–547 (1991).Google Scholar
  43. 43.
    L. L. Perchuk and T. V. Gerya, “Evidence for Potassium Mobility during the Charnockitization of Gneisses,” Dokl. Akad. Nauk 330(2), 245–248 (1993).Google Scholar
  44. 44.
    K. Petrini and Yu. Podladchikov, “Lithospheric Pressure-Depth Relationship in Compressive Regions of Thickened Crust,” J. Metamorph. Geol. 18, 67–77 (2000).CrossRefGoogle Scholar
  45. 45.
    P. Philippot and J. Selverstone, “Trace-Element-Rich Brines in Eclogitic Veins: Implications for Fluid Composition and Transport during Subduction,” Contrib. Mineral. Petrol. 106, 417–430 (1991).CrossRefGoogle Scholar
  46. 46.
    H. Raimbourg, B. Goffe, and L. Jolivet, “Garnet Reequilibration and Growth in the Eclogite Facies and Geodynamical Evolution near Peak Metamorphic Conditions,” Contrib. Mineral. Petrol. 153, 1–28 (2007).CrossRefGoogle Scholar
  47. 47.
    F. M. Richter and D. McKenzie, “Dynamical Models for Melt Segregation from a Deformable Rock Matrix,” J. Geol. 92, 729–740 (1984).CrossRefGoogle Scholar
  48. 48.
    A. Y. Rozhko, Y. Y. Podladchikov, and F. Renard, “Failure Patterns Caused by Localized Rise in Pore-Fluid Overpressure and Effective Strength of Rocks,” Geophys. Res. Lett. 34, L22304 (2007).Google Scholar
  49. 49.
    V. L. Rusinov, “Lithospheric Shear Zones and Their Role in the Endogenic Activity of the Earth,” Geotektonika, No. 3, 66–79 (2005) [Geotectonics 39, 224–235 (2005)].Google Scholar
  50. 50.
    I. D. Ryabchikov, “Calculation of Thermodynamic Activity of the Oxide Components for Different Types of Igneous Rocks,” in Sketches of Physicochemical Petrology (Nauka, Moscow, 1969), No. 1, 286–300.Google Scholar
  51. 51.
    A. A. Shchipanskii, A. P. Konilov, M. V. Mints, et al., “Late Archean Eclogites of Salma, Belomorian Mobile Belt, Kola Peninsula. Russia: Petrogenesis, Age, and Significance for Geodynamic Interpretation of Settings of the Formation of Early Continental Crust,” in Proceedings of Conference Belomorian Mobile Belt and Its Analogues: Geology, Geochronology, Geodynamics, and Metallogeny (Karel’skii NTs RAN, Petrozavodsk, 2005), pp. 324–327 [in Russian].Google Scholar
  52. 52.
    K. I. Shmulovich, Carbon Dioxide in High-Temperature Mineral Formation (Nauka, Moscow, 1988) [in Russian].Google Scholar
  53. 53.
    K. Shmulovich, C. Graham, and B. Yardley, “Quartz, Albite and Diopside Solubilities in H2O-NaCl and H2O-CO2 Fluids at 0.5–0.9 GPa,” Contrib. Mineral. Petrol. 141, 95–108 (2001).Google Scholar
  54. 54.
    H. Taylor, Jr., “Water/Rock Interactions and the Origin of H2O in Granitic Batholiths,” J. Geol. Soc. London 133, 509–558 (1977).CrossRefGoogle Scholar
  55. 55.
    A. B. Thompson, “Dehydration Melting of Pelitic Rocks and the Generation of H2O-Undersaturated Liquids,” Am. J. Sci. 282, 1567–1595 (1982).Google Scholar
  56. 56.
    J. L. R. Touret, “Fluid Inclusions in High Grade Metamorphic Rocks,” in Short Course in Fluid Inclusions: Applications to Petrology, Ed. by L. S. Hollister and M. Crawford, Mineral. Ass. Can. 6, 182–208 (1981).Google Scholar
  57. 57.
    J. W. Valley, “Stable Isotope Geochemistry of Metamorphic Rocks,” in Stable Isotopes in High-Temperature Geological Processes, Ed. by J. W. Valley, H. P. Taylor and J. R. O’Neil, (Mineral. Soc. Am., Washington), Rev. Mineral. 16, 445–489 (1986).Google Scholar
  58. 58.
    J. W. Valley, “Stable Isotope Thermometry at High Temperatures,” in Stable Isotope Geochemistry, Ed. by J. W. Valley and D. R. Cole (Mineral. Soc. Amer. Washington), Rev. Mineral. Geochem. 43, 365–414 (2001).Google Scholar
  59. 59.
    Y. F. Zheng, “Calculation of Oxygen Isotope Fractionation in Anhydrous Silicate Minerals,” Geochim. Cosmochim. Acta 57, 1079–1091 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • L. Ya. Aranovich
    • 1
  • N. S. Bortnikov
    • 1
  • S. A. Bushmin
    • 2
  • O. V. Vikent’eva
    • 1
  • E. O. Dubinina
    • 1
  • V. M. Kozlovskii
    • 1
  • Yu. M. Lebedeva
    • 2
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM)Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations