Advertisement

Petrology

, Volume 15, Issue 1, pp 58–89 | Cite as

Thermal and chemical heterogeneity of the upper mantle beneath the Baikal-Mongolia territory

  • V. A. Glebovitskii
  • L. P. Nikitina
  • A. K. Saltykova
  • Yu. D. Pushkarev
  • N. O. Ovchinnikov
  • M. S. Babushkina
  • I. V. Ashchepkov
Article

Abstract

Mineralogical, petrochemical, and geochemical characteristics and the crystallization conditions (T, P, and \(f_{O_2 } \)) of mantle xenoliths in alkaline basalts from the Baikal-Mongolia area indicated: (1) that the compositional heterogeneity of the mantle beneath southeastern and central parts of Mongolia, the Khamar-Daban, and Transbaikalia reflects variations in the degree of melting of the primitive mantle (10% and more for southeastern Mongolia, 0–15% for central Mongolia, and 0–10% for Transbaikalia and the Khamar-Daban) and, perhaps, also the compositional heterogeneity of the mantle source material; (2) the dependence of the concentrations of Y, Zr, Ti, Sc, and REE (from Nd to Lu) on the contents of major oxides (Al2O3 and MgO) and on their ratios (MgO/SiO2 and Al2O3/MgO) in the xenoliths testifies that the distribution of trace elements and REE in the mantle was controlled by its partial melting; (3) the thermal state of the mantle varies beneath the Vitim area (geothermal gradient TG = 9.4 ± 0.3°C/km), central Mongolia (TG = 10.2 ± 0.2°C/km), and southeastern Mongolia (TG = 9.4 ± 0.3°C/km); (4) the Pb-Pb model age of the material represented by the primitive mantle xenoliths is 4457 ± 12 Ma and is consistent with the evaluated duration of the development of the core and its complementary primitive mantle calculated for the U-Th-Pb system (Galer and Golddstein, 1996).

Keywords

Oxygen Fugacity Mantle Xenolith Chemical Heterogeneity Mantle Peridotite Primitive Mantle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. J. Allegre, J. P. Poirier, E. Humber, and A. W. Hoffman, “The Chemical Composition of the Earth,” Earth Planet. Sci. Lett. 134, 515–526 (1995).CrossRefGoogle Scholar
  2. 2.
    I. V. Ashchepkov, Deep-Seated Xenoliths of the Baikal Rift (Nauka, Novosibirsk, 1991) [in Russian].Google Scholar
  3. 3.
    F. R. Boyd and S. A. Mertzman, “Composition and Structure of the Kaapvaal Lithosphere, South Africa,” in Magmatic Processes: Physicochemical Principles, Ed. by B. O. Mysen, Geochem. Soc. Spec. Publ. 616, 13–24 (1987).Google Scholar
  4. 4.
    F. R. Boyd, “Compositional Distinction between Oceanic and Cratonic Lithosphere,” Earth Planet. Sci. Lett. 96, 15–26 (1989).CrossRefGoogle Scholar
  5. 5.
    G. P. Brey and T. Kohler, “Geothermometry in Four-Phase Lherzolites II. New Thermobarometers and Practical Assessment of Existing Thermobarometers,” J. Petrol. 31, 1353–1378 (1990).Google Scholar
  6. 6.
    I. T. Bryndzia and B. J. Wood, “Oxygen Thermobarometry of Abyssal Spinel Peridotites: Redox State and C-O-H Volatile Composition of the Earth’s Sub-Oceanic Upper Meantle,” Am. J. Sci. 290, 1093–1116 (1990).CrossRefGoogle Scholar
  7. 7.
    D. A. Carswell and F. G. F. Gibb, “Evaluation of Mineral Thermometers and Barometers Applicable to Garnet Lherzolite Assemblages,” Contrib. Mineral. Petrol. 95, 499–511 (1987).CrossRefGoogle Scholar
  8. 8.
    D. A. Carswell, “The Garnet-Orthopyroxene Al-Barometer Problematic Application to Natural Garnet Lherzolite Assemblages,” Mineral. Mag. 55, 19–31 (1991).CrossRefGoogle Scholar
  9. 9.
    A. A. Finnerty and F. R. Boyd, “Evaluation of Thermobarometers for Garnet Peridotites,” Geochim. Cosmochim. Acta 48, 15–27 (1984).CrossRefGoogle Scholar
  10. 10.
    F. A. Frey and D. H. Green, “The Mineralogy, Geochemistry and Origin of Lherzolite Inclusions in Victorian Basanites,” Geochim. Cosmochim. Acta 38, 1023–1059 (1974).CrossRefGoogle Scholar
  11. 11.
    S. J. G. Galer and S. L. Goldstein, “Influence of Accretion on Lead in the Earth,” in Earth Processes: Reading the Isotopic Code, Ed. by A. Basu and S.R. Hart, Am. Geophys. Union Monogr. (Washington, DC, 1996), pp. 75–98.Google Scholar
  12. 12.
    J. Ganguly and M. Tirone, “Relationship Between Cooling Rate and Cooling Age of Mineral: Theory and Applications to Meteorites,” Meteorit. Planet. Sci. 36, 167–175 (2001).CrossRefGoogle Scholar
  13. 13.
    J. Ganguly, M. Tirone, and R. L. Herving, “Diffusion Kinetics of Samarium and Neodymium in Garnet, and a Method for Determining Cooling Rates of Rocks,” Science 281, 805–907 (1998).CrossRefGoogle Scholar
  14. 14.
    Yu. S. Genshaft and A. Ya. Saltykovskii, “Cenozoic Volcanism of Mongolia,” Ross. Zh. Nauk Zemle 2,(3/4) (2000).Google Scholar
  15. 15.
    S. M. Glazer, S. F. Foley, and D. Gutner, “Trace Element Compositions of Minerals in Garnet and Spinel Peridotite Xenoliths from the Vitim Volcanic Field, Transbaikalia, Eastern Siberia,” Lithos 48, 263–286 (1999).CrossRefGoogle Scholar
  16. 16.
    V. A. Glebovitskii, L. P. Nikitina, N. O. Ovchinnikov, et al., “Geochemistry of Mantle Xenoliths from Kimberlites and Alkali Basalts as an Indicator of the Compositional Heterogeneity of the Continental Lithospheric Mantle,” in Deep-Seated Magmatism, Sources and Their Relations with Plume Activity (Nauka, Irkutsk, 2004), pp. 125–145 [in Russian].Google Scholar
  17. 17.
    A. F. Grachev, “The Khamar-Daban Hotspot of the Baikal Rift: Evidence from Chemical Geodynamics,” Fiz. Zemli, No. 3, 3–28 (1998).Google Scholar
  18. 18.
    S. R. Hart and G. A. Zindler, “In Search of a Bulk-Earth Composition,” Chem. Geol. 57, 247–267 (1986).CrossRefGoogle Scholar
  19. 19.
    D. A. Ionov and E. Yagoutz, “Sr and Nd Isotopic Composition in Minerals of Garnet and Spinel Peridotite Xenoliths from the Vitim Highland: First Data on Mantle Nodules in the USSR,” Dokl. Akad. Nauk SSSR 301(5), 1195–1199 (1992).Google Scholar
  20. 20.
    D. A. Ionov, “Chemical Variations in Peridotite Xenoliths from Vitim, Siberia: Inferences for REE and Hf Behavior in the Garnet-Facies Upper Mantle,” J. Petrol. 45, 343–367 (2004).CrossRefGoogle Scholar
  21. 21.
    D. A. Ionov, “Mantle Structure and Rifting Processes in the Baikal-Mongolia Region: Geophysical Data and Evidence from Xenoliths in Volcanic Rocks,” J. South Am. Earth Sci. 351, 41–60 (2002).Google Scholar
  22. 22.
    D. A. Ionov, I. V. Ashchepkov, Kh. G. Stosch, G. Witt-Eickschen, et al., Garnet Periodotite Xenoliths from the Vitim Volcanic Field, Transbaikalia: Petrology and Geochemistry of Garnet-Spinel Peridotite Transition Zone in the Subcontinental Mantle, in Rift and Fold Belt Magmatism, Ed. by O. A. Bogatikov (Nauka, Moscow, 1993a) [in Russian].Google Scholar
  23. 23.
    D. A. Ionov, U. Kramm, H.-G. Stosch, V. I. Kovalenko, et al., Evolution of the Upper Mantle beneath the Southern Baikal Rift Zone: a Sr-Nd Isotope Study of Xenoliths from the Bartoy Volcanoes, in Rift and Fold Belt Magmatism, Ed. by O. A. Bogatikov (Nauka, Moscow, 1993b) [in Russian].Google Scholar
  24. 24.
    D. A. Ionov, W. L. Griffin, and S. Y. O’Reilly, “Off-Cratonic Garnet and Spinel Peridotite Xenoliths from Dsun-Bussular, SE Mongolia,” in Proceedings of 7th International Kimberlite Conference, Cape Town, South Africa, 1999 (Red Roof Design, Cape Town, 1999), Vol. 1, pp. 383–390.Google Scholar
  25. 25.
    E. Jagoutz, H. Palme, H. Baddenhausen, K. Blum, et al., “The Abundances of Major, Minor and Trace Elements in the Earth’s Mantle as Derived from Primitive Ultramafic Nodules,” in Proceedings of 10th Lunar and Planetary Science Conference, Houston, USA, 1979 (Houston, 1979), pp. 2031–2050.Google Scholar
  26. 26.
    K. M. Johnson, “Experimental Determination of Partition Coefficients for Rare Earth and High-Field-Strength Elements between Clinopyroxene, Garnet, and Basaltic Melt at High Pressures,” Contrib. Mineral. Petrol. 133, 60–68 (1998).CrossRefGoogle Scholar
  27. 27.
    A. D. Johnston and B. Schwab, “Constraints on Clinopyroxene/Melt Partitioning of REE, Rb, Sr, Ti, Cr, Zr and Nb During Mantle Melting: First Insight from Peridotite Melting Experiments at 1.0 GPa,” Geochim. Cosmochim. Acta 68(23), 4949–4962 (2004).CrossRefGoogle Scholar
  28. 28.
    A. A. Kadik, E. V. Zharkova, V. I. Kovalenko, and D. A. Inov, “Redox Conditions in Upper Mantle: Experimental Determination of Oxygen Fugacities for Minerals from Peridotite Xenoliths of Shavaryn-Tsaram Volcano, Mongolia,” Geokhimiya, No. 6, 783–793 (1988).Google Scholar
  29. 29.
    T. Kleine, C. Munker, K. Mezger, and H. Palme, “Rapid Accretion and Early Core Formation on Asteroids and the Terrestrial Planets from Hf-W Chronometry,” Nature 418, 952–955 (2002).CrossRefGoogle Scholar
  30. 30.
    L. N. Kogarko, V. A. Turkov, and I. D. Ryabchikov, “Composition of the Primordial Mantle of the Earth: Evidence from Nodules,” Dokl. Akad. Nauk SSSR 290(1), 199–203 (1986).Google Scholar
  31. 31.
    M. G. Kopylova and Yu. S. Genshaft, “Petrology of Garnet-Spinel Peridotites in Cenozoic Basalts,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 5, 36–56 (1991).Google Scholar
  32. 32.
    M. G. Kopylova, S. Y. O’Reilly, and Yu. S. Genschaft, “Thermal State of the Lithosphere Beneath Central Mongolia: Evidence from Deep-Seated Xenoliths from the Shavaryn-Saram Volcanic Centre in the Tariat Depression, Hangai, Mongolia,” Lithos 36, 243–255 (1995).CrossRefGoogle Scholar
  33. 33.
    V. I. Kovalenko, V. V. Yarmolyuk, D. A. Ionov, et al., “Mantle Evolution of Central Asia and Development of Tectonic Structures of the Earth’s Crust,” Geotektonika, No. 4, 3–16 (1990).Google Scholar
  34. 34.
    V. I. Kovalenko, V. V. Yarmolyuk, V. P. Kovach, et al., “Magmatism as Factor of Crust Evolution in the Central Asian Foldbelt: Sm-Nd Isotopic Data,” Geotektonika, No. 3, 21–42 (1999) [Geotectonics 33, 191–208 (1999)].Google Scholar
  35. 35.
    K. D. Litasov, Yu. D. Litasov, and V. G. Mal’kovets, “Metasomatism and Transformations of the Upper Mantle beneath the Southern Baikal Territory: Evidence from Xenoliths of the Bartoy Volcanic Area,” Geokhimiya, No. 3, 275–301 (2005) [Geochem. Int. 43, 242–267 (2005)].Google Scholar
  36. 36.
    Magmatic Rocks. Ultramafic Rocks, Ed. by E. E. Laz’ko and E. V. Sharkov (Nauka, Moscow, 1988) [in Russian].Google Scholar
  37. 37.
    W. F. McDonough and S.-S. Sun, “The Composition of the Earth,” Chem. Geol. 120, 223–253 (1995).CrossRefGoogle Scholar
  38. 38.
    W. F. McDonough, “Compositional Model for the Earth’s Core,” in Treatise on Geochemistry (Elsevier, Amsterdam, 2003), Vol. 2, pp. 547–568.Google Scholar
  39. 39.
    N. F. Nikiforova, “Geotherms of the Upper Mantle of Transbaikalia and Mongolia in the Late Cenozoic,” Geol. Razved., No. 1, 18–25 (1998).Google Scholar
  40. 40.
    L. P. Nikitina and M. V. Ivanov, Geological Thermobarometry Based on Mineral Formation with Participation of Phases of Variable Composition (Nedra, St. Petersburg, 1992) [in Russian].Google Scholar
  41. 41.
    L. P. Nikitina, “Consistent System of Thermometers and Barometers for Ultramafic Rocks and Reconstruction of Mantle Thermal Regimes Based on Kimberlite Xenoliths,” Zap. Vseross. Mineral. O-va, No. 5, 7–16 (1993).Google Scholar
  42. 42.
    L. P. Nikitina, “Garnet-Orthopyroxene and Garnet-Clinopyroxene Thermobarometers for Mantle Xenoliths,” in Theophrastus Contributions to Advanced Studies in Geology: Capricious Earth: Models and Modeling of Geologic Processes and Objects, Ed. by V. A. Glebovitsky and V. N. Dech (St. Petersburg-Athens, 2000), Vol. 3, pp. 44–53.Google Scholar
  43. 43.
    P. Nimis and W. R. Taylor, “Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part 1. Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer,” Contrib. Mineral. Petrol. 139, 541–554 (2000).CrossRefGoogle Scholar
  44. 44.
    D. G. Pearson, G. J. Irvine, D. A. Ionov, et al., “Re-Os Isotope Systematics and Platinum Group Element Fractionation during Mantle Melt Extraction: A Study of Massif and Xenoliths of Peridotite Suites,” Chem. Geol. 208, 29–59 (2004).CrossRefGoogle Scholar
  45. 45.
    L. L. Perchuk and T. V. Gerya, “Floating of Granulite Complexes in Precambrian. 1. Geological-Petrological Test,” in Experimental Mineralogy: Some Results at the Turn of the 21st Century, Ed. by V. A. Zharikov and V. V. Fed’kin (Nauka, Moscow, 2004), Vol. 2 [in Russian].Google Scholar
  46. 46.
    L. L. Perchuk, “Study of Geodynamic Nature of the Magmatic and Metamorphic Evolution,” in Experimental Problems in Petrology (Nauka, Moscow, 1994), pp. 279–294 [in Russian].Google Scholar
  47. 47.
    Y. H. Poudjom Djomani, S. Y. O’ Reilly, W. L. Griffin, and P. Morgan, “The Density Structure of Subcontinental Lithosphere through Time,” Earth Planet. Sci. Lett. 184, 605–621 (2001).CrossRefGoogle Scholar
  48. 48.
    S. Press, G. Witt, H. A. Seck, et al., “Spinel Peridotite Xenoliths from the Tariat Depression, Mongolia,” Geochim. Cosmochim. Acta 50, 2587–2600 (1986).CrossRefGoogle Scholar
  49. 49.
    Q. Qi, A. Lawrence, L. A. Taylor, and X. Zhou, “Petrology and Geochemistry of Mantle Peridotite from SE China,” J. Petrol. 36(1), 55–79 (1995).Google Scholar
  50. 50.
    K. Righter and M. J. Drake, “Partition Coefficients at High Pressure and Temperature,” in Treatise on Geochemistry (Elsevier, Amsterdam, 2003), Vol. 2, pp. 425–449.Google Scholar
  51. 51.
    A. E. Ringwood, Origin of the Earth and Moon (Springer, New York, 1979).Google Scholar
  52. 52.
    A. Ya. Saltykovskii and Yu. S. Genshaft, Geodynamics of Cenozoic Volcanism in Southeastern Mongolia (Nauka, Moscow, 1985) [in Russian].Google Scholar
  53. 53.
    B. E. Schwab and A. D. Johnston, “Melting Systematics of Modally Variable Compositionally Intermediate Peridotites and the Effects of Mineral Fertility,” J. Petrol. 42, 1789–1811 (2001).CrossRefGoogle Scholar
  54. 54.
    H. G. Stosch, G. W. Lugmaair, and V. I. Kovalenko, “Spinel Peridotite Xenoliths from the Tariat Depression, Mongolia. II. Geochemistry and Nd and Sr Isotopic Composition and Their Implications for the Evolution of the Subcontinental Lithosphere,” Geochim. Cosmochim. Acta 50, 2601–2614 (1986).CrossRefGoogle Scholar
  55. 55.
    E. Takahashi, “Melting of a Dry Peridotite KLB-1 up to 14 GPa: Implication on the Origin of Peridotitic Upper Mantle,” J. Geophys. Res. 91, 15941–15954 (1986).Google Scholar
  56. 56.
    E. Takazawa, E. A. Frey, N. Shimizu, and M. Obata, “Whole Rock Compositional Variations in An Upper Mantle Peridotite (Horoman, Hokkaido, Japan): Are They Consistent with a Partial Melting Process,” Geochim. Cosmochim. Acta 64(4), 695–716 (2000).CrossRefGoogle Scholar
  57. 57.
    S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwall Sci. Publ., Oxford, 1985).Google Scholar
  58. 58.
    W. R. Taylor, “An Experimental Text of Some Geothermometer and Geobarometer Formulations for Upper Mantle Peridotites with Application to the Thermobarometry of Fertile Lherzolite and Garnet Websterite,” Neues Jahrb. Mineral., Abh. 172, 381–408 (1998).Google Scholar
  59. 59.
    W. R. Taylor, M. Kamperman, and R. Hamilton, “New Thermobarometer and Oxygen Fugacity Sensor Calibrations for Ilmenite-and Chromian Spinel-Bearing Peridotitic Assemblages,” in Proceedings of 7th International Kimberlite Conference, Cape Town, South Africa, 1999 (Red Roof Design, Cape Town, 1999), pp. 891–892.Google Scholar
  60. 60.
    M. J. Walter, “Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere,” J. Petrol. 39, 29–60 (1998).CrossRefGoogle Scholar
  61. 61.
    M. J. Walter, “Melt Extraction and Compositional Variability in Mantle Lithosphere,” in Treatise on Geochemistry (Elsevier, Amsterdam, 2003), Vol. 2, pp. 363–394.Google Scholar
  62. 62.
    U. Wiechert, D. A. Ionov, and K. H. Wedepohl, “Spinel Peridotite Xenoliths from Atsagin-Dush Volcano, Dariganga Lava Plateau, Mongolia: a Record of Partial Melting and Cryptic Metasomatism in the Upper Mantle,” Contrib. Mineral. Petrol. 126, 345–364 (1997).CrossRefGoogle Scholar
  63. 63.
    X. Xu, S. Y. O’Reilly, W. L. Griffin, and X. Zhou, “Enrichment of Upper Mantle Peridotite: Petrological, Trace Elemnt and Isotopic Evidence in Xenoliths from SE China,” Chem. Geol. 198, 163–188 (2003).CrossRefGoogle Scholar
  64. 64.
    X. Xu, S. Y. O’Reilly, W. L. Griffin, and X. Zhou, “Genesis of Young Lithospheric Mantle in SE China,” J. Petrol. 41, 111–148 (2000).CrossRefGoogle Scholar
  65. 65.
    V. V. Yarmolyuk and V. I. Kovalenko, “Late Mesozoic-Cenozoic Within-Plate magmatism of Central and East Asia,” Geol. Geofiz. 36(8), 132–141 (1995).Google Scholar
  66. 66.
    V. V. Yarmolyuk, V. G. Ivanov, V. I. Kovalenko, and B. G. Pokrovskii, “Magmatism and Geodynamics of the Southern Baikal Volcanic Region (Mantle Hot Spot): Results of Geochronological, Geochemical, and Isotopic (Sr, Nd, and O) Investigations,” Petrologiya 11, 3–34 (2003) [Petrology 11, 1–30 (2003)].Google Scholar
  67. 67.
    V. V. Yarmolyuk, V. I. Kovalenko, and V. G. Ivanov, “Within-Plate Late Mesozoic-Cenozoic Volcanic Province of the Central Asia: Projection of a Hot Mantle Field,” Geotektonika, No. 5, 41–67 (1995).Google Scholar
  68. 68.
    Q. Yin, S. B. Jacobsen, K. Yamashita, et al., “A Short Timescale for Terrestrial Planet Formation from Hf-W Chronometry of Meteorites,” Nature 418, 949–952 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. A. Glebovitskii
    • 1
  • L. P. Nikitina
    • 1
  • A. K. Saltykova
    • 1
  • Yu. D. Pushkarev
    • 1
  • N. O. Ovchinnikov
    • 1
  • M. S. Babushkina
    • 1
  • I. V. Ashchepkov
    • 2
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Joint Institute of Geology, Geophysics, and Mineralogy, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations