, Volume 14, Issue 2, pp 187–200 | Cite as

Baddeleyite: A promising geochronometer for alkaline and basic magmatism

  • T. B. Bayanova


The paper is devoted to the history of the discovery, petrological and mineralogical characterization, and U-Pb dating of baddeleyite ZrO2, which was separated from various Archean, Proterozoic, and Paleozoic rocks from Fennoscandia. The morphology of this mineral and its U-Pb age values were examined in the Archean carbonatites (2613 ± 18 Ma) of Siilinjarvi, Finland, and gabbronorite dikes (2738 ± 6 Ma) at the Kirovogorskoe deposit. U-Pb isochrons are reported for the baddeleyite-zircon pair obtained from the gabbronorites and anorthosites of the Proterozoic pyroxenite-gabbronorite-anorthosite association. The U-Pb baddeleyite dates for the early gabbronorite phase (2.5 Ga) and for a gabbronorite dike (late phase, 2.4 Ga) suggest that the basic magmatism evolved over a long time period (100 m.y.) in the Proterozoic. U-Pb dates are also reported for baddeleyite from the Paleozoic carbonatites of Kovdor, Sebljarv, and Vuorijarvi.


Geochemistry Late Phase Basic Magmatism Isochron Paleozoic Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apatite Potential of Alkaline Massifs in the Kola Region, Ed. by O. B. Dudkin, L. V. Arzamastsev, E. G. Balaganskaya, et al. (Karel. Nauch. Ts. RAN, Apatity, 1991) [in Russian].Google Scholar
  2. 2.
    Yu. A. Balashov, T. B. Bayanova, and F.P. Mitrofanov, “Isotopic Data on the Age and Genesis of Layered Basic-Ultrabasic Intrusions in the Kola Peninsula and Northern Karelia, Northeastern Baltic Shield,” Precambrian Res. 64(1–4), 197–205 (1993).Google Scholar
  3. 3.
    T.B. Bayanova, A.V. Voloshin, A.A. Delenitzin, et al., “Vuoriyarvi Alkaline Massif of the Kola Region: U-Pb, Rb-Sr and K-Ar Data,” in Proceedings of 6th Workshop, Svekalapko Europrobe Project, Lammi, University of Oulu, Finland (Univ. Oulu, Lammi, 2001), p. 9.Google Scholar
  4. 4.
    T. B. Bayanova and F. P. Mitrofanov, “Layered Proterezoic PGE Intrusions in Kola Region: New Isotope Data,” in Proceedings of 10th International Platinum Symposium, Oulu, Finland, 2005 (Univ. Oulu, 2005), pp. 289–291.Google Scholar
  5. 5.
    T. B. Bayanova, Age of the Reference Geological Complexes of the Kola Region and Duration of Magmatism (Nauka, St. Petersburg, 2004) [in Russian].Google Scholar
  6. 6.
    T. B. Bayanova, A. Sil’venoinen, E. Ekdal, et al., “Archean Age of the Siilinjarvi Carbonatites,” in Geochemistry of Magmatic Rocks. Materials of the Annual Session. School of the Earth’s Alkaline Magmatism (Moscow, 2002), pp. 22–23 [in Russian].Google Scholar
  7. 7.
    T. B. Bayanova, F. P. Mitrofanov, and D. G. Egorov, “U-Pb Dating of the Dike Complex at the Kirovogorsk Deposit in the Iron Ore Formation of the Kola Peninsula,” Dokl. Akad. Nauk 360(5), 673–676 (1998) [Trans. Russ. Acad. Sci., Earth Sci. Sec. 360 (5), 688 (1998)].Google Scholar
  8. 8.
    T. B. Bayanova, V. F. Smol’kin, N. V. Levkovich, and G. I. Ryungenen, “U-Pb Age of Rocks of the Mt. General’skaya Layered Intrusion, Kola Peninsula,” Geokhimiya, No. 1, 3–13 (1999) [Geochem. Int., No. 1, 1 (1999)].Google Scholar
  9. 9.
    T. B. Bayanova, V. F. Smol’kin, and V. N. Yakovenchuk, “The First Find of Baddeleyite in the Layered Intrusion of Mt. General’skaya (Kola Peninsula),” Dokl. Akad. Nauk 347(2), 211–212 (1996) [Trans. Russ. Acad. Sci., Earth Sci. Sec. 347 (2), 225 (1996)].Google Scholar
  10. 10.
    T. B. Bayanova, Yu. M. Kirnarskii, and N. V. Levkovich, “U-Pb Dating of Baddeleyite from Rocks of the Kovdor Massif,” Dokl. Akad. Nauk 356(4), 509–511 (1997) [Trans. Russ. Acad. Sci., Earth Sci. Sec. 356 (7), 1094 (1997)].Google Scholar
  11. 11.
    K. L. Buchan, R. E. Ernst, M. A. Hamilton, et al., “Rodinia: The Evidence from Integrated Palaeomagnetism and U-Pb Geochronology,” Precambrian Res. 110, 9–32 (2001).CrossRefGoogle Scholar
  12. 12.
    K. L. Buchan, S. Mertanen, R. G. Park, et al., “Comparing the Drift of Laurentia and Baltica in the Proterozoic: The Importance of Key Palaeomagnetic Poles,” Tectonophysics 319, 167–198 (2000).CrossRefGoogle Scholar
  13. 13.
    W. C. Butterman and W. R. Foster, “Zircon Stability and the ZrO2-SiO2 Phase Diagram,” Amer. Mineral. 52, 880–885 (1967).Google Scholar
  14. 14.
    A. Davidson and O. van Breemen, “Baddeleyite-Zircon Relationships in Coronitic Metagabbro, Grenville Province, Ontario: Implication for Geochronology,” Contrib. Mineral. Petrol. 100, 291–299 (1988).Google Scholar
  15. 15.
    R. M. Galimzyanova, F. P. Mitrofanov, T. B. Bayanova, et al., “Origin and U-Pb Age of Granophyres of the Imandra Differentiated Intrusion, Kola Region,” Dokl. Akad. Nauk 363(6), 805–807 (1998) [Trans. Russ. Acad. Sci., Earth Sci. Sec. 363A (9), 1301 (1998)].Google Scholar
  16. 16.
    L. M. Heaman, “Global Mafic Magmatism at 2.45 Ga: Remnants of an Ancient Large Igneous Province?” Geology 25(4), 299–302 (1997).CrossRefGoogle Scholar
  17. 17.
    L. M. Heaman and A. N. LeCheminant, “Paragenesis and U-Pb Systematics of Baddeleyite (ZrO2),” Chem. Geol. 110, 95–126 (1993).CrossRefGoogle Scholar
  18. 18.
    L. M. Heaman and N. Machado, “Timing and Origin of Midcontinent Rift Alkaline Magmatism, North America: Evidence from the Coldwell Complex,” Contrib. Mineral. Petrol 110, 289–303 (1992).CrossRefGoogle Scholar
  19. 19.
    S. A. Hiemstra, “Baddeleyite from Phalaborwa, Eastern Transvaal,” Am. Mineral 40, 275–282 (1955).Google Scholar
  20. 20.
    S. V. Ikorskii, I. L. Kamenskii, and V. A. Nivin, “High 3He/4He Ratios in the Paleozoic (380–360 Ma) Intrusions of the Kola Alkaline Province,” in Proceedings of 15th Vinogradov Symposium on Isotope Geochemistry, Moscow, Russia, 1998 (Moscow, 1998) [in Russian], pp. 116–117.Google Scholar
  21. 21.
    Caledonian Complex of Ultramafic-Alkaline Rocks and Carbonatites of the Kola Peninsula and Northern Karelia, Ed. by A. A. Kukharenko (Nedra, Moscow, 1965) [in Russian].Google Scholar
  22. 22.
    J. A. Karhu, I. Mänttäri, and H. Huhma, “Radiometric Ages and Isotope Systematics of Some Finnish Carbonatites,” Res. Terrae. Ser. A. 19, 8 (2001).Google Scholar
  23. 23.
    Yu. M. Kirnarskii, “Distribution and Composition of Accessory Baddeleyite in Carbonatites,” in New Data on Minerals of Kola Peninsula (KNTs RAN, Apatity, 1979), pp. 76–82 [in Russian].Google Scholar
  24. 24.
    O. Kouvo, “The Use of Mafic Pegmatoids in Geochronometry,” in Proceedings of 5th Europ. Colloq. Geochronology, Pisa, Italy, 1977 (Pisa, 1977), pp. 5–10.Google Scholar
  25. 25.
    P. Kresten, “Uranium in Kimberlites and Associated Rocks, with Special Reference to Lesotho Occurrences,” Lithos. 7, 171–180 (1974).Google Scholar
  26. 26.
    T. E. Krogh, “A Low-Contamination Method for Hydrothermal Dissolution of Zircon and Extraction of U and Pb for Isotopic Age Determinations,” Geochim. Cosmochim. Acta. 37, 485–494 (1973).CrossRefGoogle Scholar
  27. 27.
    E. K. Lazarenko, Course of Mineralogy (Gos. Izd. Tekhn. Lit. Ukr., Kiev, 1951) [in Russian].Google Scholar
  28. 28.
    J. F. Lovering and D. A. Wark, “Uranium-Enriched Phases in Apollo 11 and Apollo 12 Basaltic Rocks,” Proceedings of 2nd Lunar Sci. Conf., Geochim. Cosmochim. Acta. Suppl. 2, 151–158 (1971).Google Scholar
  29. 29.
    K. R. Ludwig, “ISOPLOT/Ex—A Geochronological Toolkit for Microsoft Excel, Version 2.05,” Berkley Geochronology Center, Spec. Publ. 1a (1999).Google Scholar
  30. 30.
    K. R. Ludwig “PBDAT—A Computer Program for Processing Pb-U-Th Isotope Data. Version 1.22,” US Geol. Surv. Open-File Rep., No. 88-542 (1991).Google Scholar
  31. 31.
    F. P. Mitrofanov, V. Smolkin, T. Bayanova, et al., “Paleoproterozoic (2.5–2.4 Ga) Plume Magmatism in the North-Eastern Baltic Shield and Origin of the PGE, Sulphide and Chromite Ore Deposit,” in Proceedings of the 9th International Platinum Symposium, Montana, USA, 2002 (Montana, 2002), pp. 309–311.Google Scholar
  32. 32.
    F. P. Mitrofanov and T. B. Bayanova, “Duration and Timing of Ore-Bearing Paleoproterozoic Intrusions of Kola Province,” in Mineral Deposits: Processes to Processing, Ed. by C. J. Stanley et al. (Balkema, Rotterdam, 1999), pp. 1275–1278.Google Scholar
  33. 33.
    W. R. Premo, R. T. Helz, M. L. Zientek, et al., “U-Pb and Sm-Nd Ages for the Stillwater Complex and its Associated Sills and Dikes, Beartooth Mountains, Montana: Identification of a Parent Magma,” Geology 18, 1065–1068 (1990).CrossRefGoogle Scholar
  34. 34.
    T. Reischmann, “Precise U-Pb Age Determination with Baddeleyite (ZrO2), a Case Study from the Phalaborwa Igneous Complex, South Africa,” Afr. J. Geol. 1, 1–4 (1995).Google Scholar
  35. 35.
    O. M. Rimskaya-Korsakova and I. B. Dinaburg, “Baddeleyite in Massifs of Ultramafic and Alkaline Rocks in the Kola Peninsula,” Mineralogiya Geokhimiya, No. 1, 13–30 (1964).Google Scholar
  36. 36.
    U. Schärer and C. F. Gower, “Crustal Evolution in Eastern Labrador: Constraints from Precise U-Pb Ages,” Precambrian Res. 38, 405–421 (1988).Google Scholar
  37. 37.
    U. Schärer, E. Wilmart, and J.-C. Duchesne, “The Short Duration and Anorogenic Character of Anorthosite Magmatism: U-Pb Dating of the Rogaland Complex, Norway,” Earth Planet. Sci. Lett. 139, 335–350 (1996).Google Scholar
  38. 38.
    J. Scoates and K. Chamberlain, “Baddeleyite (ZrO2) and Zircon (ZrSiO4) from Anorthositic Rocks of the Laramie Anorthosite Complex, Wyoming: Petrologic Consequences and U-Pb Ages,” Am. Mineral. 80, 1317–1327 (1995).Google Scholar
  39. 39.
    G. Strubel and S. H. Zimmer, Lexikon der Minerale (Enke, Stuutgart, 1982; Nedra, Moscow, 1987)Google Scholar
  40. 40.
    U. Soderlund and L. Johansson, “A Simple Way to Extract Baddeleyite (ZrO2),” Geochem. Geophys. Geosyst. 3(2) (2002).Google Scholar
  41. 41.
    N. V. Sorokhtina, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (Mosk. Gos. Univ., Moscow, 2000).Google Scholar
  42. 42.
    J. S. Stacey and J. D. Kramers, “Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model,” Earth Planet. Sci. Lett. 26, 207–221 (1975).CrossRefGoogle Scholar
  43. 43.
    R. H. Steiger and E. Jäger, “Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo-and Cosmochronology,” Earth Planet. Sci. Lett. 36, 359–362 (1977).CrossRefGoogle Scholar
  44. 44.
    V. V. Subbotin, A. V. Voloshin, and N. V. Sorokhtina, “New in the Mineralogy of Carbonatites from the Vuorijarvi Massif,” in Carbonatites of Kola Peninsula (S.-Peterb. Gos. Univ., St. Petersburg, 1999), pp. 114–115 [in Russian].Google Scholar
  45. 45.
    V. I. Ternovoi, Carbonatite Massifs and Their Mineral Resources (Leningr. Gos. Univ., Leningrad, 1977) [in Russian].Google Scholar
  46. 46.
    I. N. Tolstikhin, I. L. Kamenskii, B. Marti, et al., Identification of the Lower Mantle Plume Material in the Devonian Alkali-Ultramafic-Carbonatite Complexes of Kola Peninsula Based on Study of Isotopes of Noble Gases and Radioactive Elements (Nancy-Brussels-Apatity, 1999) [in Russian].Google Scholar
  47. 47.
    N. A. Toropov and L. N. Bulak, Crystallography and Mineralogy (Izd. Lit. Stroit., Leningrad, 1972) [in Russian].Google Scholar
  48. 48.
    L. Widenfalk and R. Gorbatschev, “A Note on a New Occurrence of Baddeleyite in Larvikite from Larvik, Norway,” Contrib. Mineral. Norway 51(43), 193–194 1971.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • T. B. Bayanova
    • 1
  1. 1.Geological Institute, Kola Science CenterRussian Academy of SciencesApatity, Murmansk oblastRussia

Personalised recommendations