Advertisement

Journal of Volcanology and Seismology

, Volume 9, Issue 3, pp 151–161 | Cite as

A study of nanocrystals and the glide-plane mechanism

  • G. A. SobolevEmail author
  • V. I. Vettegren’
  • V. V. Ruzhich
  • L. A. Ivanova
  • R. I. Mamalimov
  • I. P. Shcherbakov
Article

Abstract

This study is concerned with the glide plane that is produced during a dynamic fracture in a rock mass and with the section that is perpendicular to the plane. The techniques that were used include X-ray, infrared, and fluorescent spectroscopy. It was found that the plane consists of quartz and albite nanocrystals surrounded with water that contain numerous defects, viz., “broken” chemical bonds and admixture atoms. The formation of such a structure seems to have reduced the friction coefficient and produced conditions for the development of an unstable slip in the rock mass.

Keywords

Calcite Dolomite Fault Zone External Reflection Rock Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, E.S. and William, B.W., Vibrational spectra of the alkaline earth double carbonate, American Mineralogist, 1977, vol. 62, pp. 36–50.Google Scholar
  2. Bershtein, V.A., Mekhanogidroliticheskie prosessy i prochnost’ tverdykh tel (Mechano-Hydrolytic Processes and the Strength of Solids), Leningrad: Nauka, 1987.Google Scholar
  3. Born, M. and Wolf, E., Principles of Optics, Oxford: Pergamon Press, 1964.Google Scholar
  4. Bragg, W.L., The diffraction of short electromagnetic waves by a crystal, Proc. Cambridge Philos. Soc., 1913, vol. 17, pp. 43–57.Google Scholar
  5. Butyagin, P.Yu., Problems and perspectives in the evolution of mechano-chemistry, Uspekhi Khimii, 1994, vol. 63, no. 12, pp. 1031–1043.Google Scholar
  6. Calderon, E., Gauthier, M., Decremps, F., et al., Complete determination of the elastic moduli of α-quartz under hydrostatic pressure up to 1 GPa: An ultrasonic study, J. Phys.: Condensed Matter, 2007, vol. 19, 436228 (13pp).Google Scholar
  7. Calderón, F.J., Maysoon, M.M., Merle, V.F., et al., Diffuse-reflectance mid-infrared spectral properties of soils under alternative crop rotations in a semi-arid climate, Commun. Soil Sci. Plant Analysis, 2011, vol. 42, pp. 2143–2159.CrossRefGoogle Scholar
  8. Correcher, V., Garcia-Guinea, J., Sanchez-Munoz, L., and Rivera, T., Luminescence characterization of a sodium rich feldspar, Radiation Effects and Defects in Solids, 2007, vol. 162, nos. 10–11, pp. 709–714.CrossRefGoogle Scholar
  9. De Boer, K., Jansen, A.P.J., van Santen, R.A., et al., Free energy calculations of thermodynamic, elastic and structural properties of α-quartz at variable pressures and temperatures, Phys. Rev. B., 1996, vol. 54, no. 2, pp. 826–835.CrossRefGoogle Scholar
  10. Di Toro, G., Han, R., Hirose, T., et al., Fault lubrication during earthquakes, Nature Res. Lett., 2011, vol. 471, pp. 494–498.CrossRefGoogle Scholar
  11. Drozdov, A.V. and Mel’nikov, A.I., The structure of double kimberlite pipes: The Udachnaya Pipe, Marksheideriya i Nedropol’zovanie, 2009, no. 1, pp. 31–38.Google Scholar
  12. Drozdov, A.V. and Mel’nikov, A.I., Evaluating the structural tectonic setting is the basis of gas-hydrodynamic zoning of a field: The Udachnaya Pipe, Marksheideriya i Nedropol’zovanie, 2011, no. 4(54), pp. 35–39.Google Scholar
  13. Etchepare, J., Merian, M., and Kaplan, P., Vibrational normal modes of SiO2. α and β quartz, J. Chem. Phys., 1974, vol. 60, no. 5, pp. 1873–1876.CrossRefGoogle Scholar
  14. Fialko, Y. and Khazan, Y., Fusion by earthquake fault friction: Stick or slip?, J. Geophys. Res., 2005, vol. 110, B12407.CrossRefGoogle Scholar
  15. Finch, A.A. and Klein, J., The causes and petrological significance of cathodoluminescence emissions from alkali feldspar, Contributions to Mineralogy and Petrology,1999, vol. 135, pp. 234–243.CrossRefGoogle Scholar
  16. Gerasimov, V.N., Dolivo-Dobrovol’skaya, E.M., and Kamentsev, I.E., Rukovodstvo po rentgenovskomu issledovaniyu mineralov (A Handbook on X-Ray Study of Minerals), Leningrad: Nedra, 1975.Google Scholar
  17. Göthe, J., Plötze, M., and Habermann, D., Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz-a review, Mineralogy and Petrology, 2001, vol. 71, pp. 225–250.CrossRefGoogle Scholar
  18. Han, R., Shimamoto, Lee Y., and Ando, J., Granular nanoparticles lubricate faults during seismic slip, Geology, 2011, vol. 39, no. 6, pp. 599–602.CrossRefGoogle Scholar
  19. Harrick, N.J., Internal Reflection Spectroscopy, New York: Intersci. Publ., 1967.Google Scholar
  20. Harris, M.J., Salje, E.K.H., Guttler, B.K., and Carpenter, M.A., Structural states of natural potassium feldspar: An infrared spectroscopic study, Phys. Chem. Minerals, 1989, vol. 16, pp. 649–658.CrossRefGoogle Scholar
  21. Hellmann, R., Crerar, D.A., and Zhang, R., Albite feldspar hydrolysis to 300°C, Solid State Ionics, 1989, vol. 32, pp. 314–329.CrossRefGoogle Scholar
  22. Hlavay, J., Jonas, K., Elek, S., and Inczedy, J., Characterization of the particle size and the crystallinity of certain minerals by IR spectrophotometry and other instrumental methods. Investigations on quartz and feldspar, Clays and Clay Minerals, 1978, vol. 26, no. 2, pp. 139–143. http://www.mindat.org/mineralindex.php CrossRefGoogle Scholar
  23. Ipatova, I.P., Maradudin, A.A., and Wallis, R.F., The temperature dependence of the width of the fundamental lattice-vibrations absorption peak in ionic crystal. II. Approximate numerical results, Phys. Rev., 1967, vol. 155, no. 3, pp. 882–895.CrossRefGoogle Scholar
  24. Ji, J., Ge, Y., Balsam, W., et al., Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): A fast method for identifying Heinrich events in IODP Site U1308, Marine Geology, 2009, vol. 258, pp. 60–68.CrossRefGoogle Scholar
  25. Kalceff Stevens, M.A. and Phillips, M.R., Cathodoluminescence microcharacterization of the defect structure of quartz, Phys. Rev. B., 1995, vol. 52, no. 5, pp. 3122–3134.CrossRefGoogle Scholar
  26. Kawaguchi, Y., Time-resolved fractoluminescence spectra of silica glass in a vacuum and nitrogen atmosphere, Phys. Rev. B., 1995, vol. 52, no. 13, pp. 9224–9228.CrossRefGoogle Scholar
  27. Kingma, K.J. and Hemley, R.J., Raman spectroscopic study of microcrystalline silica, American Mineralogist, 1994, vol. 79, pp. 269–273.Google Scholar
  28. Kulik, V.B., Sobolev, G.A., Vettegren’, V.I., and Kireenkova, S.M., The study of nanocrystals in rocks that are subject to natural and manmade mechanical and thermal excitations, Fizika Zemli, 2011, no. 10, pp. 19–24.Google Scholar
  29. Kuzmenko, A.B., Kramers-Kronig constrained variational analysis of optical spectra, Rev. Sci. Instr., 2005, vol. 76, pp. 083108-1–8.CrossRefGoogle Scholar
  30. Lakshtanov, D.L., Sinogeikin, S.V., and Bass, J.D., High-temperature phase transitions and elasticity of silica polymorphs, Phys. Chem. Minerals, 2007, vol. 34, pp. 11–22.CrossRefGoogle Scholar
  31. Levien, L., Prewitt, C. T., and Weidner, D., Structure and elastic properties of quartz at pressure P = 1atm, J. Am. Mineralogist, 1980, vol. 65, pp. 920–930.Google Scholar
  32. Madelung, O., Festkörpertheorie, Berlin: Springer, 1972.Google Scholar
  33. Nicolas, J.H., Scott, J.F., Couto, R.M., and Correa, M.M., Raman spectra of dolomite [CaMg(CO3)2], Phys. Rev. B., 1976, vol. 14, no. 10, pp. 4676–4678.CrossRefGoogle Scholar
  34. Nielsen, S., Di Toro, G., Hirose, T., and Shimamoto, T., Frictional melt and seismic slip, J. Geophys. Res., 2008, vol. 113, B01308.Google Scholar
  35. Panov, S.I. and Streletskii, A.N., Luminescence excited by fracture in quartz bars, Khimicheskaya Fizika, 1988, vol. 7, no. 10, pp. 1421–1427.Google Scholar
  36. Petrov, V.A., Bashkarev, A.Ya., and Vettegren’, V.I., Fizicheskie osnovy prognozirovaniya dolgovechnosti konstruktsionnykh materialov (Physical Principles Underlying the Prediction of Lifetimes for Construction Materials), St. Petersburg: Politekhnika, 1993.Google Scholar
  37. Posch, Th., Baier, A., Mutschke, H., and Henning, Th., Carbonates in space: The challenge of low-temperature data, Astrophys. J., 2007, vol. 668, pp. 993–1000.CrossRefGoogle Scholar
  38. Pott, G.T. and McNicol, B.D., Spectroscopic study of the coordination and valence of Fe and Mn ions in and on the surface of aluminas and silicas, Discuss. Faraday Soc., 1971, vol. 52, pp. 121–131.CrossRefGoogle Scholar
  39. Prescott, J.R. and Fox, P.J., Three-dimensional luminescence spectra of single grains of feldspar, J. Phys. D: Appl. Phys., 1993, vol. 26, pp. 2245–2254.CrossRefGoogle Scholar
  40. Prescott, J.R., Creighton, D.F., Williams, F.W., and Spooner, N.A., Three-dimensional luminescence spectra of single grains of feldspar, in Proc. the 16th AINSE Conference on Nuclear and Complementary Techniques of Analysis (NCTA) held in Sydney NSW, 25–27 November 2009, 2010, pp. 1–4.Google Scholar
  41. Ravisankar, R., Annamalai, G. Raja, Rajan, K., et al., Mineral analysis in archaeological pottery from Porunthal, Dindigaldist, Tamilnadu, India by FT-IR spectroscopic technique, Intern. J. Sci. Innovations and Discoveries, 2012, vol. 2, pp. 53–60.Google Scholar
  42. Richter, H., Wang, Z.P., and Ley, L., The one phonon Raman spectrum in microcrystalline silicon, Solid State Commun., 1981, vol. 39, pp. 625–629.CrossRefGoogle Scholar
  43. Ruzhich, V.V., Physico-mechanical conditions for the generation of slip planes in fault zones, Geologiya i Geofizika, 1989, no. 11, pp. 39–45.Google Scholar
  44. Ruzhich, V.V., On geological identification of paleo-zones of large earthquakes in places of deep degradation shears, in Fizicheskie i seismogeologicheskie osnovy prognozirovaniya razrusheniya gornykh porod (Physical and Seismogeological Principles for Predicting Fracture in Rocks), Moscow: Nauka, 1992, pp. 10–14.Google Scholar
  45. Ruzhich, V.V. and Ryazanov, G.V., On glide planes and the mechanism for their generation, in Mekhanizmy formirovaniya tektonicheskinh struktur Vostochnoi Sibiri (The Mechanisms for the Generation of Tectonic Features in Eastern Siberia), Novosibirsk: Nauka, 1977, pp. 105–108.Google Scholar
  46. Schumann, W., Gemstones of the World, New York: Sterling, 1997.Google Scholar
  47. Shen, H. and Pollak, F.H., Raman study of polish-induced surface strain in -100-GaAs and InP, Appl. Phys. Lett., 1984, vol. 45, pp. 692–694.CrossRefGoogle Scholar
  48. Shimoda, S. and Brydon, J.E., IR studies of some interstratified minerals of mica and montmorillonite, Clays and Clay Minerals, 1971, vol. 19, pp. 61–66.CrossRefGoogle Scholar
  49. Silin’, A.R. and Trukhin, A.N., Tochechnye defekty i elementarnye vozbuzhdeniya v kristallicheskom i stekloobraznom SiO 2 (Point Defects and Elementary Excitations in Crystalline and Vitreous SiO2), Riga: Zinatne, 1985.Google Scholar
  50. Sobolev, G.A., Kireenkova, S.M., Morozov, Yu.A., et al., The study of nanocrystals in a zone of dynamic slip, Fizika Zemli, 2012, nos. 9–10, pp. 17–25.Google Scholar
  51. Spitzer, W.G. and Kleinman, D.A., Infrared lattice bands of quartz, Phys. Rev., 1961, vol. 121, no. 5, pp. 1324–1335.CrossRefGoogle Scholar
  52. Strauch, D. and Dorner, B., Lattice dynamics of alpha — quartz. I. Experiment, J. Phys.: Condensed Matter, 1993, vol. 5, pp. 6149–6154.Google Scholar
  53. Streletskii, A.N., Pakovich, A.B., and Butyagin, P.Yu., Structural defects and excitation of triboluminescence in amorphous silicon dioxide, Izvestiya AN SSSR, Seriya Fizicheskaya, 1986, vol. 50, no. 3, pp. 477–482.Google Scholar
  54. Theodosoglou, E.1, Koroneos, A., Soldatos, T., et al., Comparative Fourier transform infrared and X-ray powder diffraction analysis of naturally occurred K-feldspars, Bull. Geol. Soc. Greece, 2010 Proceedings of the 12th International Congress. Patras, May, 2010, vol. XLIII, no. 5, pp. 2752–2761.Google Scholar
  55. Tiong, K.K., Amirtharagj, P.M., Pollak, F.H., and Aspness, D.E., Effects of As+ ion implantation of the Raman spectra of GaAs: ”Spatial correlation” interpretation, Appl. Phys. Lett., 1984, vol. 44, pp. 122–128.CrossRefGoogle Scholar
  56. Turro, N.J., Modern Molecular Photochemistry, Columbia: University Sci. Press, 1991.Google Scholar
  57. Vettegren’, V.I., Bashkarev, A.Ya., Mamalimov, R.I., and Shcherbakov, I.P., Fracture luminescence of crystalline quartz under impact, Fizika Tverdogo Tela, 2008, vol. 50, no. 1, pp. 29–31.Google Scholar
  58. Vettegren’, V.I., Mamalimov, R.I., Sobolev, G.A., et al., Infrared spectroscopic study of quartz nanocrystals that were formed by intensive crushing of a heterogeneous material (granite), Fizika Tverdogo Tela, 2011a, vol. 53, no. 12, pp. 2371–2375.Google Scholar
  59. Vettegren’, V.I., Kuksenko, V.S., and Shcherbakov, I.P., The kinetics of the emission of light, sound, and radio waves from a quartz monocrystal after impact on its surface, Zhurnal Tekhnicheskoi Fiziki, 2011b, vol. 81, no. 4, pp. 148–151.Google Scholar
  60. Vettegren’, V.I., Kuksenko, V.S., and Shcherbakov, I.P., The dynamics of microcracks and time-dependent relationships that govern the deformation on the surface of a heterogeneous body (granite) at impact, Fizika Tverdogo Tela, 2012a, vol. 54, no. 7, pp. 1342–1346.Google Scholar
  61. Vettegren’, V.I., Kuksenko, V.S., Mamalimov, R.I., and Shcherbakov, I.P., The dynamics of fracture luminescence, electromagnetic and acoustic emission during impact on granite surface, Fizika Zemli, 2012b, no. 5, pp. 58–63.Google Scholar
  62. Vettegren’, V.I., Mamalimov, R.I., and Sobolev, G.A., A diffuse phase transition in a surface layer of quartz under varying temperature, Fizika Tverdogo Tela, 2013, vol. 55, no. 10, pp. 1987–1992.Google Scholar
  63. Vettegren’, V.I., Sobolev, G.A., Kireenkova, S.M., et al., The influence of water on the α-β phase transition in a surface layer of quartz, Fizika Tverfogo Tela, 2014, vol. 56, no. 6, pp. 1180–1185.Google Scholar
  64. Wang, G.-Y. and Manga, M., Earthquakes and Water, Berlin, Heidelberg: Springer, 2010.Google Scholar
  65. Yamagishi, H., Nakashima, S., and Ito, Y., High temperature infrared spectra of hydrous microcrystalline quartz, Phys. Chem. Minerals, 1997, vol. 24, pp. 66–74.CrossRefGoogle Scholar
  66. Zatsepina, G.N., Fizicheskie svoistva i struktura vody (Physical Properties and Structure of Water), Moscow: MGU, 1987.Google Scholar
  67. Zhang, M., Salje, E.K.H., Carpenter, M.A., et al., Exsolution and Al-Si disorder in alkali feldspars: Their analysis by infrared spectroscopy, American Mineralogist, 1997, vol. 82, pp. 849–857.Google Scholar
  68. Zhurkov, S.N., A kinetic concept for the strength of solids, Vestnik AN SSSR, 1968, no. 3, pp. 46–52.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • G. A. Sobolev
    • 1
    Email author
  • V. I. Vettegren’
    • 2
  • V. V. Ruzhich
    • 3
  • L. A. Ivanova
    • 3
  • R. I. Mamalimov
    • 2
  • I. P. Shcherbakov
    • 2
  1. 1.Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  2. 2.Ioffe Physico-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute of the Earth’s CrustRussian Academy of SciencesIrkutskRussia

Personalised recommendations