Journal of Volcanology and Seismology

, Volume 4, Issue 5, pp 295–309 | Cite as

The mechanism of basaltic explosions: Experimental modeling

  • A. Yu. Ozerov


An instrument package for simulating basaltic eruptions (IPSBE) with a height of 18 m has been developed for investigating the processes that occur during Strombolian eruptions. The device follows the geometrical ratio between the actual plumbing system of a volcano, with the ratio of conduit diameter to conduit height being 1 to 1000. For the first time in physical modeling studies, we created conditions in which a moving gas-saturated model liquid enters the conduit; this enabled us to study bubble nucleation, expansion, and coalescence, the generation and transformation of gas structures, and the kinetic features shown by the evolution of the gas phase. These experiments revealed a novel (previously unknown) flow pattern of two-phase mixtures in a vertical column, viz., a cluster flow that involves the regular alternation of compact clusters of gas bubbles that are separated by a fluid that does not involve a free gas phase. It is shown that the liquid, bubble, cluster, and slug flow patterns are mutually transformed under certain conditions; they are polymorphous modifications of a gas-saturated liquid moving in a vertical pipe. The data thus acquired suggested a new model for the gas-liquid movement of a magma melt in a conduit: depending on the type of gas-liquid flow behavior at the vent, the crater will exhibit different types of explosive activity, including actual explosions.


Slug Flow Plumbing System Model Liquid Cluster Flow Basaltic Volcano 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abishev, S.K., Bulgakov, R.R., and Sakharov, V.A., An Experimental Installation for Investigating the Movement of Gas-Liquid Mixtures in Vertical Tubes in Application to the Ascent of High Viscosity Oil, Tr. MINKh i GP, 1981, no. 156, pp. 98–104.Google Scholar
  2. 2.
    Adushkin, V.V., Gostintsev, Yu.A., and Firstov, P.P., On the Origin of Air Waves Due to Large Explosive Eruptions, Vulkanol. Seismol., 1984, no. 5, pp. 3–11.Google Scholar
  3. 3.
    Ariskin, A.A., Barmina, G.S., Ozerov, A.Yu., and Nielsen, R.L., The Genesis of Klyuchevskoi High Alumina Basalts, Petrologiya, 1995, vol. 3, no. 5, pp. 42–67.Google Scholar
  4. 4.
    Balesta, S.T., Ivanov, B.V., Utnasin, V.K., et al., Crustal Structure in the Klyuchevskoi Group of Volcanoes Area, Tectonic and Volcanic Features, in Glubinnoe stroenie i sovremennaya deyatel’nost’ Klyuchevskoi gruppy vulkanov (The Deep Structure and Present-Day Activities of the Klyuchevskoi Group of Volcanoes), Vladivostok, 1976, pp. 6–15.Google Scholar
  5. 5.
    Vlodavets, V.I., Spravochnik po vulkanologii (A Handbook of Volcanology), Moscow: Nauka, 1984.Google Scholar
  6. 6.
    Gordeev, E.I., Mel’nikov, Yu.Yu., Sinitsyn, V.I., and Chebrov, V.N., Volcanic Tremor of Klyuchevskoi Volcano: The 1984 Eruption at the Summit Crater, Vulkanol. Seismol., 1986, no. 5, pp. 39–53.Google Scholar
  7. 7.
    Gorel’chik, V.I., Seismic Manifestations of Volcanic Activity, in Glubinnoe stroenie i sovremennaya deyatel’nost’ Klyuchevskoi gruppy vulkanov (The Deep Structure and Present-Day Activities of the Klyuchevskoi Group of Volcanoes), Vladivostok, 1976, pp. 108–118.Google Scholar
  8. 8.
    Gorshkov, G.S., On the Depth to the Magma Chamber of Klyuchevskoi Volcano, Dokl. AN SSSR, 1956, vol. 106, no. 4, pp. 703–705.Google Scholar
  9. 9.
    Droznin, V.A., On the Origin of Volcanic Eruptions, in Mater. 1 gorodskoi konferentsii molodykh uchenykh i spetsialistov (Proc. 1st City Conf. of Young Scientists and Specialists), Petropavlovsk-Kamchatskii: Dal’nevostochnoe knizhnoe izdatel’stvo, 1969, pp. 4–6.Google Scholar
  10. 10.
    Droznin, V.A., Fizicheskaya model’ vulkanicheskogo protsessa (A Physical Model of the Volcanic Process), Moscow: Nauka, 1980.Google Scholar
  11. 11.
    Kozlov, B.K., The Regimes and Forms in the Movement of an Air-Water Mixture in a Vertical Tube, in Gidrodinamika i teploobmen pri kipenii v kotlakh vysokogo davleniya (Hydrodynamics and Heat Transport during Boiling in High Pressure Boilers), Moscow: AN SSSR, 1955, pp. 7–18.Google Scholar
  12. 12.
    Kobylkin, I.F., Selivanov, V.V., Solov’ev, V.S., and Sysoev, N.N., Udarnye i detonatsionnye volny. Metody issledovaniya (Shock and Detonation Waves: Methods of Study), Moscow: FIZMATLIT, 2004.Google Scholar
  13. 13.
    Konov, A.S. and Ozerov, A.Yu., Patterns Observable in the Eruptions of Klyuchevskoi Volcano and in Accompanying Volcanic Tremor, Vulkanol. Seismol., 1988, no. 3, pp. 21–38.Google Scholar
  14. 14.
    Kutateladze, S.S. and Nakoryakov, V.E., Teplomassoobmen i volny v gazozhidkostnykh sistemakh (Heat-and-Mass Transfer and Waves in Gas-Liquid Systems), Novosibirsk: Nauka, 1984.Google Scholar
  15. 15.
    Landau, L.D. and Lifshits, E.M., Mekhanika sploshnykh sred (The Mechanics of Continua), Moscow-Leningrad: Gostekhizdat, 1944.Google Scholar
  16. 16.
    Luchitskii, I.V., Osnovy paleovulkanologii (Principles of Paleovolcanology), vol. 1, Sovremennye vulkany (Present-Day Volcanoes), Moscow: Nauka, 1971.Google Scholar
  17. 17.
    Namiot, A.Yu., Rastvorimost’ gazov v vode (The Solubility of Gases in Water), Moscow: Nedra, 1991.Google Scholar
  18. 18.
    Ozerov, A.Yu., An Experimental Installation for Simulating Basaltic Explosions, in Mater. ezhegodnoi konf. posvyashch. dnyu vulkanologa (Proc. Annual Conf. Devoted to the Volcanologists’ Day), 28–31 March, 2007, Petropavlovsk-Kamchatskii, 2007, pp. 144–156.Google Scholar
  19. 19.
    Ozerov, A.Yu., Ariskin, A.A., and Barmina, G.S., Concerning the Problem of Genetic Relationships between High Alumina and High Magnesium Basalts for Klyuchevskoi Volcano, Kamchatka, Dokl. RAN, 1996, vol. 350, no. 1, pp. 104–107.Google Scholar
  20. 20.
    Ozerov, A.Yu., Ariskin, A.A., Kail, F., et al., A Petrologic-Geochemical Model for the Genetic Affinity between Basaltic and Andesitic Volcanisms: Klyuchevskoi and Bezymyannyi Volcanoes, Kamchatka, Petrologiya, 1997, vol. 5, no. 6, pp. 614–635.Google Scholar
  21. 21.
    Politekhnicheskii slovar’ (A Polytechnical Glossary), Moscow: Sov. Entsiklop., 1976.Google Scholar
  22. 22.
    Sakharov, V.A. and Mokhov, M.A., Gidrodinamika gazozhidkostnykh smesei v vertikal’nykh trubakh i promyslovykh pod”emnikakh (The Hydrodynamics of Gas-Liquid Mixtures in Vertical Tubes and Mining Elevators), Moscow: Neft’ i Gaz, 2004.Google Scholar
  23. 23.
    Sedov, L.I., Metody podobiya i razmernosti v mekhanike (Similarity and Dimensional Analysis in Mechanics), Moscow: Nauka, 1987.Google Scholar
  24. 24.
    Sorokin, Yu.L., On the Conditions of Stability for Some Flow Patterns in Gas-Liquid Mixtures Moving in Vertical Tubes, Prikladnaya Mekhanika i Teoreticheskaya Fizika, 1963, no. 6, pp. 160–165.Google Scholar
  25. 25.
    Storcheus, A.V. and Samoilenko, B.I., A Study of Volcanic Explosions during the Tolbachik Eruption with the Help of Movie-Taking, Vulkanol. Seismol., 1983, no. 5, pp. 102–106.Google Scholar
  26. 26.
    Fedotov, S.A., Magmaticheskie pitayushchie sistemy i mekhanizm izverzhenii vulkanov (Magmatic Feeding Systems and the Mechanism of Volcanic Eruptions), Moscow: Nauka, 2005.Google Scholar
  27. 27.
    Fedotov, S.A., Klyuchevskoi Volcano: Magma Source and Eruptive Mechanism, Vulkanol. Seismol., 1993, no. 3, pp. 23–45 [Volcanology and Seismology, 1994, vol. 15, no. 3, pp. 287–314, Gordon and Breach Science Publishers].Google Scholar
  28. 28.
    Fedotov, S.A., Zharinov, N.A., and Gorel’chik, V.I., Deformation and Earthquakes on Klyuchevskoi Volcano, a Model of Its Activity, Vulkanol. Seismol., 1988, no. 2, pp. 3–42.Google Scholar
  29. 29.
    Firstov, P.P., Vulkanicheskie akusticheskie signaly diapazona 0.5–10 Gts v atmosphere i ikh svyaz’ s eksplozivnym protsessom (Volcanic Acoustic Signals in the Range 0.5–10 Hz in the Atmosphere and Their Relationship to the Explosive Process), Petropavlovsk-Kamchatskii: KamGPU, 2003.Google Scholar
  30. 30.
    Firstov, P.P. and Storcheus, A.V., Acoustic Signals that Accompanied the March–June 1983 Eruption of Klyuchevskoi Volcano, Vulkanol. Seismol., 1987, no. 5, pp. 66–80.Google Scholar
  31. 31.
    Firstov, P.P. and Shirokov, V.A., Locating the Roots of the Klyuchevskoi Group Volcanoes from Seismological Data, in Vulkanizm i glubiny Zemli (Volcanism and the Earth’s Interior), Moscow: Nauka, 1971, pp. 113–117.Google Scholar
  32. 32.
    Firstov, P.P., Adushkin, V.V., and Storcheus, A.V., Shock Air Waves Recorded in September 1975 during the Great Tolbachik Fissure Eruption, Dokl. AN SSSR, 1978, vol. 259, no. 5, pp. 1078–1081.Google Scholar
  33. 33.
    Khrenov, A.P., Makhanova, T.M., Bogatikov, O.A., and Plate, A.N., Results of Air-Borne Surveys of Kamchatka Volcanoes: The Klyuchevskoi Group of Volcanoes, Vulkanol. Seismol., 2002, no. 2, pp. 3–20.Google Scholar
  34. 34.
    Ertel’, G, Jr., Putevoditel’ Prandtlya po gidroaerodinamike (A Prandtl Handbook on the Dynamics of Liquids and Gases), Izhevsk: Institut Komp’yuternykh Issledovanii, 2007.Google Scholar
  35. 35.
    Bourseller, Ph. and Durieux, J., Des volcans et des hommes, 2001.Google Scholar
  36. 36.
    Carrigan, C.R., Schubert, G., and Eichelberger, J.C., Thermal and Dynamical Regimes of Single- and Two-Phase Magmatic Flow in Dikes, J. Geophys. Res., 1992, vol. 97, no. B12, pp. 17377–17392.CrossRefGoogle Scholar
  37. 37.
    Chouet, B., Saccorotti, G., Martini, M., et al., Source and Path Effects in the Wave Fields of Tremor and Explosions at Stromboli Volcano, Italy, J. Geophys. Res., 1997, vol. 102, no. B7, pp. 15129–15150.CrossRefGoogle Scholar
  38. 38.
    Delpha, S.La., Patane, G., Clocchiatti, R., et al., Activity of Mount Etna Preceding the February 1999 Fissure Eruption: Inferred Mechanism from Seismological and Geochemical Data, J. Volcanol. Geotherm. Res., 2001, vol. 105, pp. 121–139.CrossRefGoogle Scholar
  39. 39.
    Jaupart, C., Magma Ascent at Shallow Levels, in Encyclopedia of Volcanoes, San Diego, Toronto: Academic Press, 2000, pp. 237–245.Google Scholar
  40. 40.
    Lees, J.M., Symons, N., Chubarova, O., et al., Tomographic Images of Kliuchevskoy Volcano P-Wave Velocity, in Volcanism and Subduction: The Kamchatka Region, Geophysical Monograph Series, 2007, vol. 172, pp. 293–302.Google Scholar
  41. 41.
    Macdonald, G.A., Volcanoes, New Jersey: Prentice-Hall Inc., Englewood Cliffs, 1972.Google Scholar
  42. 42.
    Manga, M., Waves of Bubbles in Magmatic Systems and Lavas, J. Geophys. Res., 1996, vol. 101, no. B8, pp. 17457–17465.CrossRefGoogle Scholar
  43. 43.
    Manga, M. and Stone, H.A., Interactions between Bubbles in Magmas and Lavas: Effects of Deformation, J. Volcanol. Geotherm. Res., 1994, vol. 63, pp. 267–279.CrossRefGoogle Scholar
  44. 44.
    Ozerov, A.Yu. and Konov, A.S., Regularities in the Dynamics of the Klyuchevskoy Volcano Eruption, in Proc. Kagoshima International Conf. Volcanoes, Japan, 1988, pp. 63–65.Google Scholar
  45. 45.
    Ozerov, A.Yu., The Evolution of High-Alumina Basalts of the Klyuchevskoy Volcano, Kamchatka, Russia, Based on Microprobe Analyses of Mineral Inclusions, J. Volcanol. Geotherm. Res., 2000, vol. 95, pp. 65–79.CrossRefGoogle Scholar
  46. 46.
    Ozerov, A.Yu., Periodicities in the Dynamics of the Volcanic Eruptions in Kamchatka, in 32nd International Geological Congress, Florence, Italy, Abstracts, Part 1, 2004, p. 614.Google Scholar
  47. 47.
    Ozerov, A.Yu., Firstov, P.P., and Gavrilov, V.A., Periodicities in the Dynamics of Eruptions of Klyuchevskoy Volcano, Kamchatka, in Volcanism and Subduction: The Kamchatka Region, Geophysical Monograph Series, 2007, vol. 172, pp. 283–291.Google Scholar
  48. 48.
    Privitera, E., Sgroi, T., and Gresta, S., Statistical Analysis of Intermittent Volcanic Tremor Associated with the September 1989 Summit Explosive Eruptions at Mount Etna, Sicily, J. Volcanol. Geotherm. Res., 2003, vol. 120, pp. 235–247.CrossRefGoogle Scholar
  49. 49.
    Rittmann, A., Vulkane und ihre Taetigkeit, Stuttgart: Ferdinand Enke Verlag, 1960.Google Scholar
  50. 50.
    Sparks, R.S.J., The Dynamics of Bubble Formation and Growth in Magmas: A Review and Analysis, J. Volcanol. Geotherm. Res., 1978, vol. 3, pp. 1–37.CrossRefGoogle Scholar
  51. 51.
    Utnasin, V.K., Abdurakhmanov, A.I., Anosov, G.I., et al., Types of Magma Foci of Island Arc Volcanoes and Their Study by the Method of Deep Seismic Sounding of Kamchatka, in Volcanoes and Tectonosphere, Tokai University Press, 1976, pp. 123–137.Google Scholar
  52. 52.
    Vergniolle, S. and Jaupart, C., Separated Two-Phase Flow and Basaltic Eruptions, J. Geophys. Res., 1986, vol. 91, pp. 12842–12860.CrossRefGoogle Scholar
  53. 53.
    Vergniolle, S. and Jaupart, C., The Dynamics of Degassing at Kilauea Volcano, Hawaii, J. Geophys. Res., 1990, vol. 95, pp. 2793–2809.CrossRefGoogle Scholar
  54. 54.
    Vergniolle, S. and Mangan, M., Hawaiian and Strombolian Eruptions, in Encyclopedia of Volcanoes, San Diego, Toronto: Academic Press, 2000, pp. 447–461.Google Scholar
  55. 55.
    Wallis Graham, B., One-Dimensional Two-Phase Flow, New York, Panama: McGraw-Hill Book Company, 1969.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. Yu. Ozerov
    • 1
  1. 1.Institute of Volcanology and Seismology, Far East DivisionRussian Academy of SciencesPetropavlovsk-KamchatskiiRussia

Personalised recommendations