Human Physiology

, Volume 45, Issue 5, pp 483–492 | Cite as

EEG Correlates of Passive Hand Movement in Patients after Traumatic Brain Injury with Preserved fMRI Motor Response

  • E. V. SharovaEmail author
  • G. N. Boldyreva
  • D. A. Lysachev
  • M. A. Kulikov
  • L. A. Zhavoronkova
  • M. V. Chelyapina-Postnikova
  • V. A. Popov
  • E. M. Troshina
  • E. V. Aleksandrova
  • A. S. Smirnov
  • I. G. Skoryatina


We have analyzed EEG alterations during a passive hand movement test in ten patients with varying degrees of hemiparesis caused by brain injury and compared them with normal data (17 healthy volunteers). The fMRI responses of the patients were normal. It was found that additional brain structures (that seem to be untypical of healthy people) are included in the reactive process in patients with brain injury. Additionally, we observed a widening of affected frequency bands. We observed the highest correlation with the degree of hemiparesis for the topographical parameters of changes in EEG coherence during the passive hand movement test with specific response features of the brain hemispheres contra- and ipsilateral to the movement. It is discussed whether there is any involvement of the tactile component in the passive motor EEG response. The data are considered in the context of the earlier hypothesis [1, 2] on the participation of the extrapyramidal system in the compensation of a post-traumatic motor defect.


EEG fMRI passive motor test spectral coherence analysis hemiparesis 



This study was supported by the Russian Academy of Sciences (in the framework of the State Contract of the Institute of Higher Nervous Activity and Neurophysiology) and the Russian Foundation for Basic Research (project no. 18-013-00355).


Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the 1964 Helsinki Declaration and its later amendments and the institutional bioethics committee of the Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences (Moscow). Informed consent was obtained from all individual participants involved in the study.


  1. 1.
    Sharova, E.V., Boldyreva, G.N., Zhavoronkova, L.A., et al., Opportunities of fMRI in the study of neuroplasticity of movements in normal conditions and in traumatic brain injury, Materialy nauchnoi konferentsii s mezhdunarodnym uchastiem “Fundamental’nye porblemy neironauk: funktsional’naya asimmetriya, neiroplastichnost’ i neirodegeneratsiya,” 18–19 dekabrya 2014 goda (Proc. Sci. Conf. with Int. Participation “Fundamental Problems of Neurosciences: Functional Asymmetry, Neuroplasticity, and Neurodegeneration,” Decem-ber 18–19, 2014), Moscow: Nauchn. Tsentr Nevrol., Ross. Akad. Med. Nauk, 2014, p. 900.Google Scholar
  2. 2.
    Sharova, E.V., Boldyreva, G.N., Zhavoronkova, L.A., et al., fMRI analysis of the human brain’s neuroplasticity as a basis of movement disorders compensation after traumatic brain injury, Clin. Neurophysiol., 2017, vol. 128, no. 9, p. e278.CrossRefGoogle Scholar
  3. 3.
    Laufs, H., Kleinschmidt, A., Beyerly, A., et al., EEG correlated fMRI of human alpha activity, NeuroImage, 2003, vol. 19, no. 4, p. 1463.CrossRefGoogle Scholar
  4. 4.
    Boldyreva, G.N., Zhavoronkova, L.A., Sharova, E.V., et al., fMRI–EEG study of healthy human brain responses to functional loads, Hum. Physiol., 2009, vol. 35, no. 3, p. 274.CrossRefGoogle Scholar
  5. 5.
    Schultze Kraft, M., Becker, R., Breakspear, M., and Ritter, P., Exploiting the potential of three dimensional spatial wavelet analysis to explore nesting of temporal oscillations and spatial variance in simultaneous EEG–fMRI data, Prog. Biophys. Mol. Biol., 2011, vol. 105, nos. 1–2, p. 67.CrossRefGoogle Scholar
  6. 6.
    Picchioni, D., Horovitz, S.G., Fukunaga, M., et al., Infraslow EEG oscillations organize Large-scale cortical-subcortical interactions during sleep: a combined EEG/fMRI Study, Brain Res., 2011, vol. 1374, no. 2, p. 63.CrossRefGoogle Scholar
  7. 7.
    Bak, N., Glenthoj, B.Y., Larsson, H.B., and Oranje, B., Sourse localization of sensory gating: a combined EEG and fMRI study in healthy volunteers, NeuroImage, 2011, vol. 54, no. 4, p. 2711.CrossRefGoogle Scholar
  8. 8.
    Sharova, E.V., Migalev, A.S., Kulikov, M.A., et al., Comparison of reactive changes in the EEG and fMRI characteristics of the brain of a healthy person based on multidimensional statistics, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2012, vol. 62, no. 2, p. 14.Google Scholar
  9. 9.
    Formaggio, E., Storti, S., Galazzo, I., et al., Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements, NeuroEng. Rehabil., 2013, vol. 10, no. 1, p. 24.Google Scholar
  10. 10.
    Tyvaert, L., Hawco, E., Kobayashi, E., et al., Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study, Brain, 2008, vol. 131, p. 2042.CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Yang, T., Liao, W., et al., EEG-fMRI study of ictal and interictal epileptic activity in patients with eyelid mioclonia with absences, Epilepsia, 2008, vol. 49, no. 12, p. 2078.CrossRefGoogle Scholar
  12. 12.
    Boldyreva, G.N., Zhavoronkova, L.A., Sharova, E.V., et al., fMRI-EEG assessment of cerebral reactivity to motor tasks in patients with brain tumor, Hum. Physiol., 2010, vol. 36, no. 5, p. 550.CrossRefGoogle Scholar
  13. 13.
    van de Winckel, A., Kilngeis, K., Bruyninckx, F., et al., How does brain activation differ in children with unilateral cerebral palsy compared to typically developing children, during active and passive movements, and tactile stimulation? An fMRI study, Res. Dev. Disabil., 2013, vol. 34, no. 1, p. 183.CrossRefGoogle Scholar
  14. 14.
    Boldyreva, G.N., Sharova, E.V., Zhavoronkova, L.A., et al., fMRI and EEG brain response of a healthy person to active and passive movements with a leading hand, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2014, vol. 64, no. 5, p. 488.Google Scholar
  15. 15.
    Gallazo, B., Storti, S.F., Formaggio, E., et al., Investigation of brain hemodynamic changes induced by active and passive movements: a combined arteria spin labeling-BOLD fMRI study, J. Magn. Reson. Imaging, 2014, vol. 40, no. 4, p. 937.CrossRefGoogle Scholar
  16. 16.
    Zhavoronkova, L.A., Moraresku, S.I., Boldyreva, G.N., et al., fMRI reactions in motor tasks performed by patients with traumatic brain injury, Hum. Physiol., 2018, vol. 44, no. 5, p. 495.CrossRefGoogle Scholar
  17. 17.
    Dobrynina, L.A., Kremneva, E.I., Konovalov, R.N., and Kadykov, A.S., The use of passive motor paradigm for evaluation of the sensorimotor system by the functional MRI, Ann. Nevrol., 2011, vol. 5, no. 3, p. 10.Google Scholar
  18. 18.
    McPeak, L.A., Physiatric history and examination, in Physical Medicine and Rehabilitation, Braddom, R., Ed., Philadelphia: W.B. Saunders, 1996, p. 3.Google Scholar
  19. 19.
    Rusinov, V.S., Grindel’, O.M., Boldyreva, G.N., and Vakar, E.M., Biopotentsialy mozga cheloveka (Biopotentials of Human Brain), Moscow: Meditsina, 1987.Google Scholar
  20. 20.
    Grindel’, O.M., Voronov, V.G., Romanova, N.V., et al., Intercenter EEG relations with regressive and chronic post-traumatic Korsakovsky syndrome, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2001, vol. 51, no. 5, p. 572.Google Scholar
  21. 21.
    Boldyreva, G.N., Sharova, E.V., Zhavoronkova, L.A., et al., Comparison of fMRI-reactions of the brain of healthy people with active, passive, and imaged hand movements, Med. Visual., 2015, no. 5, p. 2.Google Scholar
  22. 22.
    Sharova, E.V., Boldyreva, G.N., Kulikov, M.A., et al., EEG correlates of the states of visual and auditory attention in healthy subjects, Hum. Physiol., 2009, vol. 35, no. 1, p. 1.CrossRefGoogle Scholar
  23. 23.
    Sharova, E.V., Kulikov, M.V., Barkalaya, D.B., et al., Intercentral relationships of cortical bioelectrical activity of the human brain following operative interventions in brainstem structures, Neurosci. Behav. Physiol., 1992, vol. 22, no. 3, p. 194.CrossRefGoogle Scholar
  24. 24.
    Boldyreva, G.N., Zhavoronkova, L.A., Sharova, E.V., and Dobronravova, I.S., Electroencephalogram intercentral interaction as a reflection of normal and pathological human brain activity, Span. J. Psychol., 2007, vol. 10, no. 1, p. 169.CrossRefGoogle Scholar
  25. 25.
    Zhavoronkova, L.A., Kushnir, E.M., Zharikova, A.V., et al., Electroencephalographic characteristics of healthy people with different success in performing dual tasks (posture control and counting), Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2015, vol. 65, no. 5, p. 597.Google Scholar
  26. 26.
    Babiloni, F., Babiloni, C., Carducci, F., et al., Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study, NeuroImage, 2003, vol. 19, no. 1, p. 1.CrossRefGoogle Scholar
  27. 27.
    Knyazeva, M.G., Fornari, E., Meuli, R., et al., Interhemispheric integration at different spatial scales: the evidence from EEG coherence and fMRI, J. Neurophysiol., 2006, vol. 96, p. 259.CrossRefGoogle Scholar
  28. 28.
    Ben-Soussan, T.D., Glicksohn, J., Goldstein, A., et al., Into the square and out of the box: the effects of quadrate motor training on creativity and alpha coherence, PLoS One, 2013, vol. 8, no. 1, p. 1.Google Scholar
  29. 29.
    Bechtereva, N.P., Zdorovyi i bol’noi mozg cheloveka (Human Healthy and Injured Brain), Leningrad: Nauka, 1988.Google Scholar
  30. 30.
    Sovetov, A.N., Vosstanovitel’nye i kompensatornye protsessy v tsentral’noi nervnoi sisteme (Recovery and Compensatory Processes in the Central Nervous System), Moscow: Meditsina, 1988.Google Scholar
  31. 31.
    Anokhin, P.K., Compensation of impaired functions and its importance for clinical medicine, Khirurgiya, 1954, no. 10, p. 3.Google Scholar
  32. 32.
    Baehr, M. and Frotscher, M., Duus’ Topical Diagnosis in Neurology, Stuttgart: Thieme, 2005.Google Scholar
  33. 33.
    De Pascalis, V., Scacchia, P., Papi, B., and Corr, P.J., Changes of spontaneous EEG-band oscillations to tonic cold pain and the Behavioral Inhibition and Fight-Flight-Freeze Systems, Int. J. Psychophysiol., 2018, vol. 131, p. S35.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • E. V. Sharova
    • 1
    Email author
  • G. N. Boldyreva
    • 1
  • D. A. Lysachev
    • 3
  • M. A. Kulikov
    • 1
  • L. A. Zhavoronkova
    • 1
  • M. V. Chelyapina-Postnikova
    • 1
  • V. A. Popov
    • 2
  • E. M. Troshina
    • 2
  • E. V. Aleksandrova
    • 2
  • A. S. Smirnov
    • 2
  • I. G. Skoryatina
    • 2
  1. 1.Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscowRussia
  2. 2.Burdenko Research Institute of NeurosurgeryMoscowRussia
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations