Human Physiology

, Volume 44, Issue 8, pp 901–905 | Cite as

Assessment of the Effects of Cell Therapy on Reproduction of the Conditioned Passive Avoidance Reflex in Rats with Quinoline-Induced Model of Huntington’s Disease

  • A. V. StavrovskayaEmail author
  • E. V. Novosadova
  • N. G. Yamshchikova
  • A. S. Ol’shansky
  • A. S. Gushchina
  • E. V. Konovalova
  • I. A. Grivennikov
  • S. N. Illarioshkin


Introduction: The model involving injection of quinolinic acid (QA) into the rat striatum simulates many clinical and morphological characteristics of Huntington’s disease (HD). Searching for effective treatment methods is rather important because of the fatality of HD. One of such methods is to create a neuroprotective environment to slow down the current degenerative process and/or replace dead neurons. In particular, this can be performed by transplantation of cells capable of neuronal differentiation and integration into the proper structural and functional brain networks. Objective: To assess effectiveness and safety of transplantation of neural precursor cells differentiated from induced pluripotent stem cells (iPSCs) taken from a healthy donor into the striatum of rats with QA-induced model of HD. Materials and methods: The effects of neurotransplantation on reproduction of the conditioned passive avoidance reflex were studied in rats with the HD model induced by injection of QA into the caudate nuclei of the striatum. In the study group (n = 8), human neural progenitors (1 × 106 per 10 µL of normal saline unilaterally, on the injured side) derived from iPSCs taken from a healthy donor were injected into the caudate nuclei as the transplanted material; normal saline was injected to the control group. The conditioned passive avoidance responses were tested with the ShutАvoid 1.8.03 software on a Harvard apparatus (Panlab, Spain). Results: When testing the reproduction of the passive avoidance responses, we found that injection of QA into the caudate nuclei of the rat brain reliably reduced the conditioned responses. Neurotransplantation of neural progenitors derived from iPSCs had a clear therapeutic effect and reinforced the passive avoidance reflex. During the entire testing period (7 days after exposure to the pain stimulus), the experimental animals either did not visit the dark compartment at all or visited it with a long latency period. Conclusions: Experimental neurotransplantation using iPSC derivatives allowed to improve storage of trace memory in rats with QA-induced model of HD, which contributes to correction of cognitive impairments caused by administration of the neurotoxin.


quinolinic acid Huntington’s disease conditioned passive avoidance reflex trace memory disturbance neurotransplantation neural progenitors induced pluripotent stem cells 


  1. 1.
    MacDonald, M.E., Ambrose, C.M., Duyao, M.P., Myers, R.H., Lin, C., et al., A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes, Cell, 1993, vol. 72, pp. 971–983. PMID 8458085CrossRefGoogle Scholar
  2. 2.
    Ivanova-Smolenskaya, I.A., Markova, E.D., Illarioshkin, S.N., and Nikol’skaya, N.N., Monogenic hereditary diseases of the central nervous system, in Nasledstvennye bolezni nervnoi sistemy (Inherited Diseases of Nervous System: Manual for Physicians), Vel’tishcheva, J.E., and Temina, P.A., Eds., Moscow: Meditsina, 1998, pp. 9–104.Google Scholar
  3. 3.
    Estrada Sanchez, A.M., Mejia-Toiber, J., and Massieu, L., Excitotoxic neuronal death and the pathogenesis of Huntington’s disease, Arch. Med. Res., 2008, vol. 39, pp. 265–276. PMID 18279698. doi 10.1016/ j.arcmed.2007.11.011CrossRefGoogle Scholar
  4. 4.
    Bachoud-Levi, A.-C., Neural grafts in Huntington’s disease: viability after 10 years, Lancet Neurol., 2009, vol. 8, pp. 979–981. PMID 19833293. doi 10.1016/ S1474-4422(09)70278-9CrossRefGoogle Scholar
  5. 5.
    Cicchetti, F., Saporta, S., Hauser, R.A., et al., Neural transplants in patients with Huntington’s disease undergo disease-like neuronal degeneration, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 12483–12488. PMID 19620721. doi 10.1073/pnas.0904239106CrossRefGoogle Scholar
  6. 6.
    Kerkis, I., Haddad, M., Valverde, C., and Glosman, S., Neural and mesenchymal stem cells in animal models of Huntington’s disease: past experiences and future challenges, Stem Cell Res. Ther., 2015, vol. 6, p. 232. PMID 26667114. doi 10.1186/s13287-015-0248-1CrossRefGoogle Scholar
  7. 7.
    Maucksch, C., Vazey, E., Gordon, R., and Connor, B., Stem cell-based therapy for Huntington’s disease, J. Cell. Biochem., 2013, vol. 114, pp. 754–763. PMID 23097329. doi 10.1002/jcb.24432CrossRefGoogle Scholar
  8. 8.
    Reuter, I., Tai, Y.F., Pavese, N., et al., Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease, J. Neurol., Neurosurg. Psychiatry, 2008, vol. 79, pp. 948–951.CrossRefGoogle Scholar
  9. 9.
    Nekrasov, E.D., Lebedeva, O.S., Vasina, E.M., et al., Platform for studying of Huntington’s disease on the base of induced pluripotent stem cells, Ann. Klin. Eksp. Nevrol., 2012, vol. 6, no. 4, pp. 30–35.Google Scholar
  10. 10.
    Fink, K., Crane, A., et al., Intrastriatal transplantation of adenovirus-generated induced pluripotent stem cells for treating neuropathological and functional deficits in a rodent model of Huntington’s disease, Stem Cells Transl. Med., 2014, vol. 3, pp. 620–631. PMID 24657963. doi 10.5966/sctm.2013-0151CrossRefGoogle Scholar
  11. 11.
    Fink, K., Rossignol, J., Lu, M., et al., Survival and differentiation of adenovirus-generated induced pluripotent stem cells transplanted into the rat striatum, Cell Transpl., 2013. PMID 23879897. doi 10.3727/ 096368913X670958Google Scholar
  12. 12.
    Peng, J. and Zeng, X., The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases, Stem Cell Res. Ther., 2011, vol. 2, p. 32. PMID 21861938. doi 10.1186/scrt73CrossRefGoogle Scholar
  13. 13.
    Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, pp. 663–676. PMID 16904174. doi 10.1016/ j.cell.2006.07.024CrossRefGoogle Scholar
  14. 14.
    Yamanaka, S. and Blau, H.M., Nuclear reprogramming to a pluripotent state by three approaches, Nature, 2010, vol. 465, pp. 704–712. PMID 20535199. doi 10.1038/nature09229CrossRefGoogle Scholar
  15. 15.
    Stavrovskaya, A.V., Konorova, I.L., Illarioshkin, S.N., et al., Technologies of nervous system diseases modeling, in Nevrologiya XXI veka: diagnosticheskie, lechebnye i issledovatel’skie tekhnologii. Rukovodstvo dlya vrachei (Neurology of 21 Century: Diagnostics, Medical Course, and Study Technologies. Manual for Physicians), Piradov, M.A., Illarioshkin, S.N., and Tanashyan, M.M., Eds., Moscow: ATMO, 2015, vol. 3, pp. 73–133.Google Scholar
  16. 16.
    Leavitt, B.R., Raamsdonk, J.M., Shehadeh, J., et al., Wild-type huntingtin protects neurons from excitotoxicity, J. Neurochem., 2006, vol. 96, pp. 1121–1129. PMID 16417581. doi 10.1111/j.1471-4159.2005.03605.xCrossRefGoogle Scholar
  17. 17.
    Paxinos, G. and Watson, C., The Rat Brain in Stereotaxic Coordinates, San Diego: Academic, 1998, 4th ed.Google Scholar
  18. 18.
    Miroshnichenko, E.V., Stavrovskaya, A.V., Shugalev, N.P., et al., Changes of an emotional condition of rats at representation of passive avoidance reactions after neurotensin administration into nucleus accumbens of rat brain, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2010, vol. 60, no. 6, pp. 704–711.Google Scholar
  19. 19.
    Stavrovskaya, A.V., Yamshikova, N.G., Ol’shansky, A.S., et al., Neurotensin changes an after-action of a painful stress to behavior of rats with lesion of serotoninergic structures of substancia nigra, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2013, vol. 63, no. 3, pp. 384–394.Google Scholar
  20. 20.
    Shugalev, N.P., Stavrovskaya, A.V., Yamshiko-va, N.G., et al., Representation of passive avoidance reactions after neurotensin administration into nucleus accumbens of rat brain against the background of Reserpine action, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2012, vol. 62, no. 3, pp. 357–363.Google Scholar
  21. 21.
    Roberts, T.J., Price, J., Williams, S.C., and Modo, M., Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington’s disease, Neuroscience, 2006, vol. 139, pp. 1187–1199. PMID 16517087. doi 10.1016/j.neuroscience.2006.01.025CrossRefGoogle Scholar
  22. 22.
    Kendall, A., Hantraye, P., and Palfi, S., Striatal tissue transplantation in non-human primates, Prog. Brain Res., 2000, vol. 127, pp. 381–404. PMID 11142037. doi 10.1016/ S0079-6123(00)27018-0CrossRefGoogle Scholar
  23. 23.
    Shen, L.H., Li, Y., Chen, J., et al., Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke, Neuroscience, 2006, vol. 137, pp. 393–399. PMID 16298076. doi 10.1016/j.neuroscience.2005.08.092CrossRefGoogle Scholar
  24. 24.
    Shyu, W.C., Lin, S.Z., Chiang, M.F., et al., Intracerebral peripheral blood stem cell (CD34z) implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats, J. Neurosci., 2006, vol. 26, pp. 3444–3453. PMID 16571751. doi 10.1523/JNEUROSCI.5165-05.2006CrossRefGoogle Scholar
  25. 25.
    Nakao, N., Nakayama, T., Yahata, T., et al., Adipose tissue-derived mesenchymal stem cells facilitate hematopoiesis in vitro and in vivo: advantages over bone marrow-derived mesenchymal stem cells, Am. J. Pathol., 2010, vol. 177, no. 2, pp. 547–554. PMID 20558580. doi 10.2353/ajpath.2010.091042CrossRefGoogle Scholar
  26. 26.
    Ribeiro, C.A., Grando, V., Dutra Filho, C.S., et al., Evidence that quinolinic acid severely impairs energy metabolism through activation of NMDA receptors in striatum from developing rats, J. Neurochem., 2006, vol. 99, pp. 1531–1542. doi 10.1111/j.1471-4159. 2006.04199.xCrossRefGoogle Scholar
  27. 27.
    McLin, J.P., Thompson, L.M., and Steward, O., Differential susceptibility to striatal neurodegeneration induced by quinolinic acid and kainate in inbred, outbred and hybrid mouse strains, Eur. J. Neurosci., 2006, vol. 24, pp. 3134–3140. doi 10.1111/j.1460-9568. 2006.05198.xCrossRefGoogle Scholar
  28. 28.
    Emerich, D.F., Thanos, C.G., Goddard, M., et al., Extensive neuroprotection by choroid plexus transplants in excitotoxin lesioned monkeys, Neurobiol. Dis., 2006, vol. 23, pp. 471–480. PMID 16777422. doi 10.1016/j.nbd.2006.04.014CrossRefGoogle Scholar
  29. 29.
    Kendall, A.L., David, F., Rayment, G., et al., The influence of excitotoxic basal ganglia lesions on motor performance in the common marmoset, Brain, 2000, vol. 123, no. 7, pp. 1442–1458. PMID 10869056. doi 10.1093/brain/123.7.1442CrossRefGoogle Scholar
  30. 30.
    Becker, S. and Lim, J., A computational model of prefrontal control in free recall: strategic memory use in the California Verbal Learning Task, J. Cognit. Neurosci., 2003, vol. 15, pp. 821–832. PMID 14511535. doi 10.1162/089892903322370744CrossRefGoogle Scholar
  31. 31.
    Illarioshkin, S.N., Huntington’s disease as model for studying of neurodegenerative diseases, Byull. Nats. O‑va Izuch. Bolezni Parkinsona Rasstroystvam Dvizh., 2016, vol. 1, pp. 3–11.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Stavrovskaya
    • 1
    Email author
  • E. V. Novosadova
    • 2
  • N. G. Yamshchikova
    • 1
  • A. S. Ol’shansky
    • 1
  • A. S. Gushchina
    • 1
  • E. V. Konovalova
    • 1
  • I. A. Grivennikov
    • 2
  • S. N. Illarioshkin
    • 1
  1. 1.Research Center of NeurologyMoscowRussia
  2. 2.Institute of Molecular Genetics RASMoscowRussia

Personalised recommendations