Advertisement

Human Physiology

, Volume 44, Issue 6, pp 609–616 | Cite as

Functional Connectivity of Cortical Fields at Rest as a Mechanism of Brain Preparation to Purposeful Activity

  • E. P. StankovaEmail author
  • A. N. Shepovalnikov
Article

Abstract

The relationship between individual characteristics of spontaneous electrical activity of the brain and concentration of attention was studied using the analysis of accuracy in the “Bourdon test” for voluntary attention. The accuracy of test performance was found to correlate with the spectral power and index of the α and θ bands in the left mid-temporal cortical area, as well as an increase in signal connectivity between the mid-temporal and other EEG sites. An increase in the spectral power of the θ band and a decrease in α index led to an increase in the number of errors in the test. On the one hand, the findings possibly indicate that the left mid-temporal region plays a special role organizing the coordinated systemic spatiotemporal interaction of cortical fields, which is necessary for efficient test performance. On the other hand, the findings raise the question as to whether a reorganization of background brain activity is of importance as a precondition of local processes to facilitate further cognitive performance.

Keywords:

α activity EEG θ activity cross-correlation attention Bourdon test 

Notes

REFERENCES

  1. 1.
    Raichle, M.E., MacLeod, A.M., Snyder, A.Z., et al., A default mode of brain function, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 2, p. 676.CrossRefGoogle Scholar
  2. 2.
    Raichle, M.E., Neuroscience. The brain’s dark energy, Science, 2006, vol. 24, no. 5803, p. 1249.CrossRefGoogle Scholar
  3. 3.
    Raichle, M.E., The brain’s default mode network, Annu. Rev. Neurosci., 2015, vol. 38, p. 1433.CrossRefGoogle Scholar
  4. 4.
    Sadaghiani, S., Scheeringa, R., Lehongre, K., et al., Intrinsic connectivity networks, α oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study, J. Neurosci., 2010, vol. 30, no. 30, p. 10243.CrossRefGoogle Scholar
  5. 5.
    Piradov, M.A., Suponeva, N.A., Seliverstov, Yu.A., et al., The opportunities of modern imaging methods in the study of spontaneous brain activity in the rest, Nevrol. Zh., 2016, vol. 21, no. 1, p. 4.Google Scholar
  6. 6.
    Sadaghiani, S., Hesselmann, G., Friston, K.J., and Kleinschmidt, A., The relation of ongoing brain activity, evoked neural responses, and cognition, Front. Syst. Neurosci., 2010, vol. 4, p. 20.Google Scholar
  7. 7.
    Sadaghiani, S., Scheeringa, R., Lehongre, K., et al., α-band phase synchrony is related to activity in the fronto-parietal adaptive control network, J. Neurosci., 2012, vol. 32, no. 41, p. 14305.CrossRefGoogle Scholar
  8. 8.
    Seeley, W.W., Menon, V., and Schatzberg, A.F., Dissociable intrinsic connectivity networks for salience processing and executive control, J. Neurosci., 2007, vol. 2, no. 9, p. 2349.CrossRefGoogle Scholar
  9. 9.
    Papo, D., Why should cognitive neuroscientists study the brain’s resting state? Front. Hum. Neurosci., 2013, vol. 7, no. 45, p. 1.CrossRefGoogle Scholar
  10. 10.
    von Stein, A. and Sarnthein, J., Different frequencies for different scales of cortical integration: from local gamma to long range alpha theta synchronization, Int. J. Psychophysiol., 2000, vol. 38, no. 3, p. 301.CrossRefGoogle Scholar
  11. 11.
    Knyazev, G.G., Slobodskoj-Plusnin, J.Y., Bo-charov, A.V., and Pylkova, L.V., The default mode network and EEG alpha oscillations: an independent component analysis, Brain Res., 2011, vol. 1402, p. 67.CrossRefGoogle Scholar
  12. 12.
    Smit, D.J.A., Posthuma, D., Boomsma, D.I., and de Geus, E.J.C., Heritability of back ground EEG across the power spectrum, Psychophysiology, 2005, vol. 42, p. 691.CrossRefGoogle Scholar
  13. 13.
    van Beijsterveldt, C.E.M. and van Baal, G.C.M., Twin and family studies of the human electroencephalogram: a review and a meta-analysis, Biol. Psychol., 2002, vol. 62, p. 111.CrossRefGoogle Scholar
  14. 14.
    Barvinok, A.I. and Rozhkov, V.P., Intercentral coordination of cortical electrical processes with mental activity, Fiziol. Chel., 1992, vol. 18, no. 3, p. 5.Google Scholar
  15. 15.
    Andronnikova, E.A. and Zaika, E.V., Metody issledovaniya vospriyatiya, vnimaniya i pamyati: rukovodstvo dlya prakticheskikh psikhologov (Analysis of Perception, Attention, and Memory: Manual for Plasticizing Psychologists), Kharkov: Khark. Nats. Univ. im. V.N. Karazina, 2011.Google Scholar
  16. 16.
    Parks, E.L. and Madden, D.J., Brain connectivity and visual attention, Brain Connect., 2013, vol. 3, no. 1, p. 317.CrossRefGoogle Scholar
  17. 17.
    Baars, B.J. and Gage, N.M., Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience, Amsterdam: Elsevier, 2007.Google Scholar
  18. 18.
    Shelepin, Yu.E., Fokin, V.A., Men’shikova, S.V., et al., Use of methods of icons and brain mapping to evaluate the functional state of the visual system, Sens. Sist., 2014, vol. 28, no. 2, p. 63.Google Scholar
  19. 19.
    Shevelev, A.I., Neirony-detektory zritel’noi kory (Neurons-Detectors of the Visual Cortex), Moscow: Nauka, 2010.Google Scholar
  20. 20.
    Roe, A.W., Chelazzi, L., Connor, C.E., et al., Toward a unified theory of visual area V4, Neuron, 2012, vol. 74, no. 1, p. 12.CrossRefGoogle Scholar
  21. 21.
    Shioiri, S., Honjyo, H., Kashiwase, Y., et al., Visual attention spreads broadly but selects information locally, Sci. Rep., 2016, vol. 6, art. ID 35513.CrossRefGoogle Scholar
  22. 22.
    Rolls, E.T., Invariant visual object and face recognition: neural and computational bases, and a model, VisNet, Front. Comput. Neurosci., 2012, vol. 6, p. 35.CrossRefGoogle Scholar
  23. 23.
    Baldassarre, A., Lewis, C.M., Committeri, G., et al., Individual variability in functional connectivity predicts performance of a perceptual task, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 9, p. 3516.CrossRefGoogle Scholar
  24. 24.
    Vygotskii, L.S., Razvitie vysshikh psikhicheskikh funktsii (Development of Higher Mental Functions), Moscow: Akad. Pedagog. Nauk RSFSR, 1960.Google Scholar
  25. 25.
    Klimesch, W., Alpha-band oscillations, attention, and controlled access to stored information, Trends Cognit. Sci., 2012, vol. 16, no. 12, p. 606.CrossRefGoogle Scholar
  26. 26.
    Eismont, E.V., Kaida, A.I., and Bakunova, A.V., Relationship between EEG parameters and the level of development of voluntary attention in 5–9 years old children, Uch. Zap. Krymsk. Fed. Univ. im. V.I. Verndaskogo, Biol., Khim., 2015, vol. 1, no. 4, p. 89.Google Scholar
  27. 27.
    Iemi, L., Chaumon, M., Crouzet, S.M., and Busch, N.A., Spontaneous neural oscillations bias perception by modulating baseline excitability, J. Neurosci., 2017, vol. 37, no. 4, p. 807.CrossRefGoogle Scholar
  28. 28.
    Pavlova, L.P., Dominanty deyatel’nogo mozga cheloveka: Sistemnyi pasikhofiziologicheskii podkhod k analizu EEG (Dominants of Human Brain Activity: System Psychophysiological Approach to EEG Analysis), St. Petersburg: Inform-Navigator, 2017.Google Scholar
  29. 29.
    Klimesch, W., EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis, Brain Res. Rev., 1999, vol. 29, p. 169.CrossRefGoogle Scholar
  30. 30.
    van der Hiele, K., Vein, A.A., Reijntjes, R.H.A.M., et al., EEG correlates in the spectrum of cognitive decline, Clin. Neurophysiol., 2007, vol. 118, no. 9, p. 1931.CrossRefGoogle Scholar
  31. 31.
    Sugrobova, G.A., Semenova, O.A., and Machinskaya, R.I., Regulatory and information components of cognitive activity in 7–8 years old children with ADHD, Ekol. Chel., 2010, no. 11, p. 19.Google Scholar
  32. 32.
    Hermens, D.F., Soei, E.X., Clarke, S.D., et al., Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder, Pediatr. Neurol., 2005, vol. 32, no. 4, p. 248.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistrySt. Petersburg, Russian Academy of Sciences, Russia

Personalised recommendations