Human Physiology

, Volume 44, Issue 6, pp 656–662 | Cite as

Effect of the Elevation Training Mask on the Functional Outcomes of the Respiratory Muscles

  • M. O. Segizbaeva
  • N. P. Aleksandrova


The results of this study confirm that the Elevation Training Mask 2.0 (ETM) increases the physiological characteristics and functional reserve capacity of the respiratory muscles. This is manifested in an increase in the maximal strength of muscle contraction, significantly greater maximal voluntary ventilation, an increase in the endurance and resistance of inspiratory and expiratory muscles to the development of fatigue when performing heavy exercise. An adequate indicator of the functional status of inspiratory muscles for the assessment of their functional potential is the tension–time index, ТТ0.1.


respiratory muscle training heavy exercise tension–time index maximal inspiratory pressure endurance of respiratory muscles 



  1. 1.
    Romer, L.M. and Polkey, M.I., Exercise-induced respiratory muscle fatigue: implications for performance, J. Appl. Physiol., 2008, vol. 104, no. 3, p. 879.CrossRefGoogle Scholar
  2. 2.
    Segizbaeva, M.O., Donina, Zh.A., Timofeev, N.N., et al., EMG-analyses of human inspiratory muscle resistance to fatigue during exercise, Adv. Exp. Med. Biol., 2013, vol. 788, p. 97.CrossRefGoogle Scholar
  3. 3.
    Janssens, L., Brumagne, S., McConnell, A.K., et al., The assessment of inspiratory muscle fatigue in healthy individuals: a systematic review, Respir. Med., 2013, vol. 107, no. 3, p. 331.CrossRefGoogle Scholar
  4. 4.
    Oueslati, F., Berriri, A., Boone, J., and Ahmaidi, S., Respiratory muscle strength is decreased after maximal incremental exercise in trained runners and cyclists, Respir. Physiol. Neurobiol., 2018, vol. 248, no. 1, p. 25.CrossRefGoogle Scholar
  5. 5.
    Segizbaeva, M.O. and Aleksandrova, N.P., Effect of oxygen breathing on inspiratory muscle fatigue during resistive load in cycling men, J. Physiol. Pharmacol., 2009, vol. 60, no. 5, p. 111.Google Scholar
  6. 6.
    Dempsey, J.A., McKenzie, D.C., Haverkamp, H.C., and Eldridge, M.W., Update in the understanding of respiratory limitations to exercise performance in fit, active adults, Chest, 2008, vol. 134, no. 3, p. 613.CrossRefGoogle Scholar
  7. 7.
    Sales, A.T., Fregonezi, G.A., Ramsook, A.H., et al., Respiratory muscle endurance after training in athletes and non-athletes: a systematic review and meta-analysis, Phys. Ther. Sport, 2016, vol. 17, no. 1, p. 76.CrossRefGoogle Scholar
  8. 8.
    Enright, S.J., Unnithan, V.B., Heward, C., et al., Effect of high-intensity inspiratory muscle training on lung volumes, diaphragm thickness, and exercise capacity in subjects who are healthy, Phys. Ther., 2006, vol. 86, no. 3, p. 345.Google Scholar
  9. 9.
    Segizbaeva, M.O., Timofeev, N.N., Donina, Zh.A., et al., Effects of inspiratory muscle training on resistance to fatigue of respiratory muscles during exhaustive exercise, Adv. Exp. Biol. Med., 2015, vol. 840, no. 9, p. 35.CrossRefGoogle Scholar
  10. 10.
    ATS/ERS–American Thoracic Society/European Respiratory Society Statement on respiratory muscle testing, Am. J. Respir. Crit. Care Med., 2002, vol. 166, p. 518.Google Scholar
  11. 11.
    Garcia-Rio, F., Pino, J.M., Ruiz, A., et al., Accuracy of noninvasive estimates of respiratory muscle effort during spontaneous breathing in restrictive diseases, J. Appl. Physiol., 2003, vol. 95, no. 4, p. 1542.CrossRefGoogle Scholar
  12. 12.
    Chlif, M., Keochkerian, D., Temfemo, A., et al., Inspiratory muscle performance in endurance-trained elderly males during incremental exercise, Respir. Physiol. Neurobiol., 2016, vol. 228, no. 7, p. 61.CrossRefGoogle Scholar
  13. 13.
    Hayot, M., Ramonatxo, M., Matecki, S., et al., Noninvasive assessment of inspiratory muscle function during exercise, Am. J. Respir. Crit. Care Med., 2000, vol. 162, no. 6, p. 2201.CrossRefGoogle Scholar
  14. 14.
    Ramonatxo, M., Boulard, P., Prefaut, C., et al., Validation of a noninvasive tension-time index of inspiratory muscles, J. Appl. Physiol., 1995, vol. 78, no. 2, p. 646.CrossRefGoogle Scholar
  15. 15.
    Chlif, M., Keochkerian, D., Feki, Y., et al., Inspiratory muscle activity during incremental exercise in obese men, Int. J. Obes., 2007, vol. 31, no. 9, p. 1456.CrossRefGoogle Scholar
  16. 16.
    Biggs, N.C., England, B.S., Turcotte, N.J., et al., Effect of simulated altitude on maximal oxygen uptake and inspiratory fitness, Int. J. Exercise Sci., 2017, vol. 10, no. 1, p. 128.Google Scholar
  17. 17.
    Porcari, J.P., Probst, L., Forrester, K., et al., Effect of wearing the Elevation Training Mask on aerobic capacity, lung function and hematological variables, J. Sports Sci. Med., 2016, vol. 15, p. 379.Google Scholar
  18. 18.
    Langer, D., Ciavaglia, C.E., Faisal, A., et al., Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD, J. Appl. Physiol., 2018, vol. 125, no. 2, p. 381.Google Scholar
  19. 19.
    Griffiths, L.A. and McConnell, A.K., The influence of inspiratory and expiratory muscle training upon rowing performance, Eur. J. Appl. Physiol., 2007, vol. 99, no. 5, p. 457.CrossRefGoogle Scholar
  20. 20.
    Downey, A.E., Chenoweth, L.M., Townsend, D.K., et al., Effects of inspiratory muscle training on exercise responses in normoxia and hypoxia, Respir. Physiol. Neurobiol., 2007, vol. 156, no. 2, p. 137.CrossRefGoogle Scholar
  21. 21.
    McConnell, A.K. and Lomax, M., The influence of inspiratory muscle work history and specific inspiratory muscle training upon human limb muscle fatigue, J. Physiol., 2006, vol. 577, no. 1, p. 445.CrossRefGoogle Scholar
  22. 22.
    Verges, S., Lenherr, O., Haner, A.C., et al., Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training, Am. J. Physiol.: Regul., Integr. Comp. Physiol., 2007, vol. 292, no. 3, p. 1246.Google Scholar
  23. 23.
    Kraemer, W.J., Adams, K., Cafarelli, E., et al., American College of Sports Medicine position stand. Progression models in resistance training for healthy adults, Med. Sci. Sports Exercise, 2002, vol. 34, no. 2, p. 364.CrossRefGoogle Scholar
  24. 24.
    Jacobs, R.A., Fluck, D., Bonne, T.C., et al., Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function, J. Appl. Physiol., 2013, vol. 115, no. 6, p. 785.CrossRefGoogle Scholar
  25. 25.
    Groennebaek, T. and Vissing, K., Impact of resistance training on skeletal muscle mitochondrial biogenesis, content, and function, Front. Physiol., 2017, vol. 8, p. 713.CrossRefGoogle Scholar
  26. 26.
    Ramirez-Sarmiento, A., Orozco-Levi, M., Guell, R., et al., Inspiratory muscle training in patients with chronic obstructive pulmonary disease: structural adaptation and physiologic outcomes, Am. J. Respir. Crit. Care Med., 2002, vol. 166, no. 11, p. 1491.CrossRefGoogle Scholar
  27. 27.
    Marcinik, E.J., Potts, J., Schlabach, G., et al., Effects of strength training on lactate threshold and endurance performance, Med. Sci. Sports Exercise, 1991, vol. 23, no. 6, p. 739.CrossRefGoogle Scholar
  28. 28.
    Holloszy, J.O. and Coyle, E.F., Adaptations of skeletal muscle to endurance exercise and their metabolic consequences, J. Appl. Physiol., 1984, vol. 56, no. 4, p. 831.CrossRefGoogle Scholar
  29. 29.
    Brown, P.I., Sharpe, G.R., and Johnson, M.A., Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea, Eur. J. Appl. Physiol., 2008, vol. 104, no. 1, p. 111.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations