Human Physiology

, Volume 44, Issue 6, pp 617–626 | Cite as

Study of Brain Bioelectrical Activity Maturation in Northern Schoolchildren with Integral Parameters of Multichannel EEG

  • V. P. RozhkovEmail author
  • M. I. Trifonov
  • S. I. Soroko


The purpose of this study was to evaluate the age dynamics of the integral characteristics of spatial (Asf), temporal (Rsf), and spectral (frequency) organization of brain bioelectric activity by analyzing the structure function (SF) of a multichannel EEG. The study consisted of two series, one conducted in autumn and other, four months later in spring. The study included 38 schoolchildren aged 7–17 years from the North. A linear relationship was observed between the magnitude of the time scale of the EEG temporal connectivity Rsf and the age (r = –0.65, p < 0.001) and assumed to reflect the increase in functional lability and plasticity of neurodynamic processes. A comparison of EEG parameters in 23 schoolchildren included in both series showed an individual stability of the integral characteristics of the spatial and temporal organization of the EEG. Several subjects had a changed frequency spectrum of the SF in spring compared to that in autumn; the finding reflected changes in the balance of subcortical and cortical regulatory systems during seasonal adaptation in the North.


brain development children adolescents structure function of EEG the North 



  1. 1.
    Alferova, V.V. and Farber, D.A., Reflection of age features of the functional organization of the brain in an electroencephalogram of rest, in Strukturno-funktsional’naya organizatsiya razvivayushchegosya mozga (Structural and Functional Organization of Developing Brain), Leningrad: Nauka, 1990, p. 45.Google Scholar
  2. 2.
    Thatcher, R.W., Cyclic cortical reorganization during early childhood, Brain Cognit., 1992, vol. 20, no. 1, p. 24.CrossRefGoogle Scholar
  3. 3.
    Gmehlin, D., Thomas, Ch., Weisbrod, M., et al., Development of brain synchronization within school-age—individual analysis of resting (α) coherence in a longitudinal data set, Clin. Neurophysiol., 2011, vol. 122, p. 1973.CrossRefGoogle Scholar
  4. 4.
    Nunez, P.L., Toward a quantitative description of large-scale neocortical dynamic function and EEG, Behav. Brain Sci., 2000, vol. 23, no. 3, p. 371.CrossRefGoogle Scholar
  5. 5.
    Tsitseroshin, M.N. and Shepoval’nikov, A.N., Stanovlenie integrativnoi funktsii mozga (Development of the Integrative Function of the Brain), St. Petersburg: Nauka, 2009.Google Scholar
  6. 6.
    Rappoport, Zh.Zh., Adaptatsiya rebenka na Severe (Adaptation of a Child in the North), Leningrad: Meditsina, 1979.Google Scholar
  7. 7.
    Boiko, E.R., Fiziko-biokhimicheskie osnovy zhiznedeyatel’nosti cheloveka na Severe (Physiological-Biochemical Basis of Human Life in the North), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2005.Google Scholar
  8. 8.
    Evdokimov, V.G., Rogachevskaya, O.V., and Varlamova, N.G., Moduliruyushchee vliyanie faktorov Severa na kardiorespiratornuyu sistemy cheloveka v ontogenese (Modulation Effect of the North Conditions on Cardiorespiratory System of a Man in Ontogenesis), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2007.Google Scholar
  9. 9.
    Tkachev, A.V., Boiko, E.R., Gubkina, Z.D., et al., Endokrinnaya sistema i obmen veshchestv u cheloveka na Severe (Endocrine System and Metabolism of a Man in the North), Syktyvkar: Komi Nauch. Tsentr, Ural. Otd., Ross. Akad. Nauk, 1992.Google Scholar
  10. 10.
    Koubasov, R.V., Demin, D.B., and Tkachev, A.V., Adaptive reactions of the endocrine system of children living under conditions of contrasting photoperiods, Hum. Physiol., 2006, vol. 32, no. 4, p. 450.CrossRefGoogle Scholar
  11. 11.
    Soroko, S.I., Burykh, E.A., Bekshaev, S.S., et al., Characteristics of the formation of systems activity in the brain and autonomic functions in children in conditions of the European North (discussion paper), Neurosci. Behav. Physiol., 2007, vol. 37, no. 9, p. 857.CrossRefGoogle Scholar
  12. 12.
    Medvedev, V.I., Adaptatsiya cheloveka (Adaptation of a Man), St. Petersburg: Inst. Mozga Chel., Ross. Akad. Nauk, 2003.Google Scholar
  13. 13.
    Kolmogorov, A.N., Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, no. 4, p. 299.Google Scholar
  14. 14.
    Prokhorov, S.A. and Grafkin, V.V., Strukturno-spektral’nyi analiz sluchainykh protsessov (Structural-Spectral Analysis of Random Processes), Samara: Samar. Nauch. Tsentr, Ross. Akad. Nauk, 2010.Google Scholar
  15. 15.
    Kaplan, A.Ya., B’en, Dzh.G., Timashev, S.F., et al., Functional variability of the autocorrelation structure of the EEG, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2006, vol. 56, no. 3, p. 389.Google Scholar
  16. 16.
    Timashev, S.F., Panischev, O.Yu., Polyakov, Y.S., et al., Analysis of cross-correlations in electroencephalogram signals as an approach to proactive diagnosis of schizophrenia, Phys. A (Amsterdam), 2012, vol. 391, no. 4, p. 1179.CrossRefGoogle Scholar
  17. 17.
    Sleimen-Malkoun, R., Perdikis, D., Müller, V., et al., Brain dynamics of aging: Multiscale variability of EEG signals at rest and during an auditory oddball task, eNeuro, 2015, vol. 2, no. 3, p. 1.CrossRefGoogle Scholar
  18. 18.
    Conte, E., Khrennikov, A., Federici, A., and Zbilut, J.P., Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian space–time and V. Weiss and H. Weiss golden ratio in brain, Chaos, Solitons Fractals, 2009, vol. 41, no. 5, p. 2790.CrossRefGoogle Scholar
  19. 19.
    Trifonov, M. and Rozhkov, V., Age-related changes in probability density function of pairwise Euclidean distances between multichannel human EEG signals, J. Biosci. Med., 2014, vol. 2, no. 4, p. 19.Google Scholar
  20. 20.
    Trifonov, M., The structure function as new integral measure of spatial and temporal properties of multi-channel EEG, Brain Inf., 2016, vol. 3, no. 4, p. 211.CrossRefGoogle Scholar
  21. 21.
    Rozhkov, V.P., Trifonov, M.I., Bekshaev S.S., et al., Assessment of the effects of geomagnetic and solar activity on bioelectrical processes in the human brain using a structural function, Neurosci. Behav. Physiol., 2018, vol. 48, p. 317.CrossRefGoogle Scholar
  22. 22.
    Fischer, L, Craig, G.C., and Kiemle, C., Horizontal structure function and vertical correlation analysis of mesoscale water vapor variability observed by airborne lidar, J. Geophys. Res.: Atmos., 2013, vol. 118, p. 1.Google Scholar
  23. 23.
    Ukhtomskii, A.A., Sobranie sochinenii. Tom 2. Parabioz, fiziologicheskaya labil’nost’, usvoenie ritma (Collection of Research Works, Vol. 2: Parabiosis, Physiological Lability, and Rhythm Assimilation), Leningrad: Leningr. Gos. Univ., 1951.Google Scholar
  24. 24.
    Bezrukikh, M.M., Machinskaya, R.I., and Farber, D.A., Structural and functional organization of a developing brain and formation of cognitive functions in child ontogeny, Hum. Physiol., 2009, vol. 35, no. 6, p. 658.CrossRefGoogle Scholar
  25. 25.
    Soroko, S.I., Rozhkov, V.P., and Bekshaev, S.S., EEG correlates of genophenotypic characteristics of brain development in children of the aboriginal and settler populations in Northeast Russia, Neurosci. Behav. Physiol., 2013, vol. 43, no. 7, p. 783.CrossRefGoogle Scholar
  26. 26.
    Gasser, T., Verleger, R., Bächer, P., and Sroka, L., Development of the EEG of school-age children and adolescents. I. Analysis of band power, Electroencephalogr. Clin. Neurophysiol., 1988, vol. 69, no. 2, p. 91.CrossRefGoogle Scholar
  27. 27.
    Soroko, S.I., Shemyakina, N.V., Nagornova, Z.V., and Bekshaev, S.S., Longitudinal study of EEG frequency maturation and power changes in children on the Russian North, Int. J. Dev. Neurosci., 2014, vol. 38, p. 127.CrossRefGoogle Scholar
  28. 28.
    Kruchinina, O.V., Galperina, E.I., and Shepovalni-kov, A.N., Characteristics of the spatial organization of oscillations of brain bioelectric potentials in adolescents, Hum. Physiol., 2014, vol. 40, no. 5, p. 483.CrossRefGoogle Scholar
  29. 29.
    Segalowitz, S.J., Santesso, D.L., and Jetha, M.K., Electrophysiological changes during adolescence, Brain Cognit., 2010, vol. 72, no. 1, p. 86.CrossRefGoogle Scholar
  30. 30.
    Miskovic, V., Ma, X., Chou, C.A., et al., Developmental changes in spontaneous electrocortical activity and network organization from early to late childhood, Neuroimage, 2015, vol. 118, p. 237.CrossRefGoogle Scholar
  31. 31.
    Soroko, S.I., Bekshaev, S.S., and Sidorov, Yu.A., Osnovnye tipy mekhanizmov samoregulyatsii mozga (General Mechanisms of Brain Self-Regulation), Leningrad: Nauka, 1990.Google Scholar
  32. 32.
    Pavlov, I.P., Polnoe sobranie sochinenii (Full Collection of Research Works), Moscow: Akad. Nauk SSSR, 1951–1952, vol. 3, book 2, p. 268.Google Scholar
  33. 33.
    Whitford, T.J., Rennie, C.J., Grieve, S.M., et al., Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology, Hum. Brain Mapp., 2007, vol. 28, no. 3, p. 228.CrossRefGoogle Scholar
  34. 34.
    Koolschijn, P.C. and Crone, E.A., Sex difference and structural brain maturation from childhood to early adulthood, Dev. Cognit. Neurosci., 2013, vol. 5, p. 106.CrossRefGoogle Scholar
  35. 35.
    Krivoschekov, S.G. and Grebneva, N.N., The morphological features and functional state of the adolescent organism under conditions of adaptation to the North, Hum. Physiol., 2000, vol. 26, no. 2, p. 204.CrossRefGoogle Scholar
  36. 36.
    Arshavskii, V.V., Gel’fgat, E.L., Rotenberg, V.S., and Solovenchuk, L.L., Interhemispheric asymmetry as a factor of human adaptation in the North, Fiziol. Chel., 1989, vol. 15, no. 5, p. 142.Google Scholar
  37. 37.
    Semenova, O.A., Machinskaya, R.I., and Loma-kin, D.I., The influence of the functional state of brain regulatory systems on the programming, selective regulation and control of cognitive activity in children: I. Neuropsychological and EEG analysis of age-related changes in brain regulatory functions in children aged 9–12 years, Hum. Physiol., 2015, vol. 41, no. 4, p. 345.CrossRefGoogle Scholar
  38. 38.
    Shirmunskaya, E.A., Klinicheskaya elektroentsefalografiya. Obzor literatury i perspektivy ispol’zovaniya metoda (Clinical Electroencephalography: A Literature Review and Prospective Use), Moscow: Meibi, 1991.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. P. Rozhkov
    • 1
    Email author
  • M. I. Trifonov
    • 1
  • S. I. Soroko
    • 1
  1. 1.Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations