Human Physiology

, Volume 44, Issue 6, pp 663–672 | Cite as

Comparison of the Efficacy of Neuromuscular Electrostimulation and Interval Exercise Training in Early Rehabilitation of Patients Hospitalized with Decompensation of Chronic Heart Failure

  • M. G. PoltavskayaEmail author
  • V. P. Sviridenko
  • I. B. Kozlovskaya
  • A. V. Brand
  • D. A. Andreev
  • I. V. Patchenskaya
  • Yu. A. Koryak
  • E. S. Tomilovskaya
  • I. V. Saenko
  • I. Yu. Giverts
  • O. N. Dikur
  • A. A. Doletsky
  • A. L. Syrkin


Neuromuscular electrical stimulation (NMES) of large muscle groups in patients with stable chronic heart failure (CHF) increases physical work capacity and muscle strength. The safety and efficacy of short courses of NMES in patients with decompensated CHF has not been studied. The aim of the study was to compare the impact of leg NMES, interval bicycle training, and conventional treatment on the functional capacity and quality of life in patients hospitalized with decompensation of CHF. A total of 51 patients (84.3% of men; mean age, 62.5 ± 3.3 years) hospitalized with decompensated CHF were divided into three groups: optimal pharmacological therapy (OPT) + three weeks of NMES of thigh and shin muscles starting within the first three days after admission (n = 10), OPT + three weeks of bicycle exercise training (BET) starting on the fifth to seventh day (n = 20), and the control group of OPT only (n = 21). At baseline and after the three-week symptom-limited cardiopulmonary exercise test, 6-min walk test, Duke Activity Status Index (DASI) and quality of life assessment by the Minnesota Living with Heart Failure Questionnaire (MLHFQ) were performed. Patients in the NMES and BET groups presented with similar increases in the 6-min walk distance, plus 65.0 (50.0; 112.5) and 53.0 (51.0; 78; 0) m; DASI, plus 8.6 (5.5; 11.8) and 8.0 (4.5; 9.0) points; and VO2peak, plus 1.9 (0.3; 3.2) and 2.2 (0.7; 3.2) mL/(min kg), respectively. In the control group, only the 6-min walk distance increased significantly (+21 m). The improvement in the MLHFQ score was observed in all the three groups: maximal in the BET group and minimal in the NMES group. Three weeks of leg muscle electrical stimulation and bicycle training provide similar improvement in physical capacity, daily activity, and the quality of life in patients hospitalized for severe CHF. The efficacy of NMES is comparable with low to moderate intensity interval bicycle training and well tolerated by patients.


electrical muscle stimulation neuromuscular stimulation chronic heart failure decompensated heart failure rehabilitation physical training interval training peak oxygen uptake quality of life physical capacity 



  1. 1.
    Logeart, D., Cohen-Solal, A., Guiti, C., et al., Cardiac and peripheral responses to exercise in patients with chronic heart failure, Eur. Heart J., 1999, vol. 20, p. 931.CrossRefGoogle Scholar
  2. 2.
    Piepoli, M.F., Kaszmarek, A., Francis, D.P., et al., Reduced peripheral skeletal muscle mass and abnormal reflex physiology in chronic heart failure, Circulation, 2006, vol. 114, no. 2, p. 126.CrossRefGoogle Scholar
  3. 3.
    Piepoli, M.F., Davos, C., Francis, D.P., and Coats, A.J., Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH), Br. Med. J., 2004, vol. 328, no. 7433, p. 189.CrossRefGoogle Scholar
  4. 4.
    Ponikowski, P., Voors, A.A., Anker, S.D., et al., 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC, Eur. Heart J., 2016, vol. 37, no. 27, p. 2129.CrossRefGoogle Scholar
  5. 5.
    Piepoli, M.F., Conraads, V., Corra, U., et al., Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation, Eur. J. Heart Failure, 2011, vol. 13, no. 4, p. 347.CrossRefGoogle Scholar
  6. 6.
    Arutyunov, G.P., Kolesnikova, E.A., Begrambeko-va, Yu.L., et al., Recommendations for prescribing physical training for patients with chronic heart failure, Zh. Serdechnaya Nedostatochnost’, 2017, vol. 18, no. 1, p. 41.Google Scholar
  7. 7.
    Sumin, A.N., Local physical trainings using electrostimulation of skeletal muscles of patients with chronic heart failure, Zh. Serdechnaya Nedostatochnost’, 2009, vol. 10, no. 1, p. 37.Google Scholar
  8. 8.
    Sillen, M.J.H., Speksnijder, C.M., Eterman, R.A., et al., Effects of neuromuscular electrical stimulation of muscles of ambulation in patients with chronic heart failure or COPD: a systematic review of the English-language literature, Chest, 2009, vol. 136, no. 1, p. 44.CrossRefGoogle Scholar
  9. 9.
    Arena, R., Pinkstaff, S., Wheeler, E., et al., Neuromuscular electrical stimulation and inspiratory muscle training as potential adjunctive rehabilitation options for patients with heart failure, J. Cardiopulm. Rehabil. Prev., 2010, vol. 30, no. 4, p. 209.CrossRefGoogle Scholar
  10. 10.
    Rector, T.S. and Cohn, J.N., Assessment of patient outcome with the Minnesota Living with Heart Failure questionnaire: reliability and validity during a randomized, double-blind, placebo-controlled trial of pimobendan, Am. Heart J., 1992, vol. 124, no. 4, p. 1017.CrossRefGoogle Scholar
  11. 11.
    ATS statement: guidelines for the six-minute walk test, Am. J. Respir. Crit. Care Med., 2002, vol. 166, no. 1, p. 111.Google Scholar
  12. 12.
    Hlatky, M.A., Boineau, R.E., Higginbotham, M.B., et al., A brief self-administered questionnaire to determine functional capacity (the Duke Activity Status Index), Am. J. Cardiol., 1989, vol. 64, no. 10, p. 651.CrossRefGoogle Scholar
  13. 13.
    Meyer, K., Samek, L., Schwaibold, M., et al., Interval training in patients with severe chronic heart failure: analysis and recommendations for exercise procedures, Med. Sci. Sports Exercise, 1997, vol. 29, no. 3, p. 306.CrossRefGoogle Scholar
  14. 14.
    Vaquero, A.F., Chicharro, J.L., Gil, L., et al., Effects of muscle electrical stimulation on peak VO2 in cardiac transplant patients, Int. J. Sports Med., 1998, vol. 19, no. 5, p. 317.CrossRefGoogle Scholar
  15. 15.
    Quittan, M., Wiesinger, G.F., Sturm, B., et al., Improvement of thigh muscles by neuromuscular electrical stimulation in patients with refractory heart failure: a single-blind, randomized, controlled trial, Am. J. Phys. Med. Rehabil., 2001, vol. 80, no. 3, p. 206.CrossRefGoogle Scholar
  16. 16.
    Banerjee, P., Caulfield, B., Crowe, L., and Clark, A.L., Prolonged electrical muscle stimulation exercise improves strength, peak VO2, and exercise capacity in patients with stable chronic heart failure, J. Card. Failure, 2009, vol. 15, no. 4, p. 319.CrossRefGoogle Scholar
  17. 17.
    Nuhr, M.J., Pette, D., Berger, R., et al., Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure, Eur. Heart J., 2004, vol. 25, no. 2, p. 136.CrossRefGoogle Scholar
  18. 18.
    Karavidas, A.I., Raisakis, K.G., Parissis, J.T., et al., Functional electrical stimulation improves endothelial function and reduces peripheral immune responses in patients with chronic heart failure, Eur. J. Cardiovasc. Prev. Rehabil., 2006, vol. 13, no. 4, p. 592.CrossRefGoogle Scholar
  19. 19.
    Karavidas, A.I., Parissis, J.T., Arapi, S.M., et al., Effects of functional electrical stimulation on quality of life and emotional stress in patients with chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy: a randomized, placebo-controlled trial, Eur. J. Heart Failure, 2008, vol. 10, p. 709.CrossRefGoogle Scholar
  20. 20.
    Deley, G., Kervio, G., Verges, B., et al., Comparison of low-frequency electrical myostimulation and conventional aerobic exercise training in patients with chronic heart failure, Eur. J. Cardiovasc. Prev. Rehabil., 2005, vol. 12, no. 3, p. 226.CrossRefGoogle Scholar
  21. 21.
    Deley, G., Eicher, J.C., Verges, B., et al., Do low-frequency electrical myostimulation and aerobic training similarly improve performance in chronic heart failure patients with different exercise capacities? J. Rehabil. Med., 2008, vol. 40, no. 3, p. 219.CrossRefGoogle Scholar
  22. 22.
    LeMaitre, J.P., Harris, S., Hannan, J., et al., Maximal oxygen uptake corrected for skeletal mass accurately predicts functional improvements following exercise training in chronic heart failure, Eur. J. Heart Failure, 2006, no. 8, p. 243.Google Scholar
  23. 23.
    Dobsak, P., Novakova, M., Fiser, B., et al., Electrical stimulation of skeletal muscles. An alternative to aerobic exercise training in patients with chronic heart failure? Int. Heart J., 2006, vol. 47, no. 3, p. 441.CrossRefGoogle Scholar
  24. 24.
    Dobsak, P., Novakova, M., Siegelova, J., et al., Low-frequency electrical stimulation increases muscle strength and improves blood supply in patients with chronic heart failure, Circ. J., 2006, vol. 70, no. 1, p. 75.CrossRefGoogle Scholar
  25. 25.
    Eicher, J.C., Dobsak, P., Berteau, O., et al., Rehabilitation in chronic congestive heart failure: comparison of bicycle training and muscle electrical stimulation, Scr. Med., 2004, vol. 77, nos. 5–6, p. 261.Google Scholar
  26. 26.
    Harris, S., LeMaitre, J.P., Mackenzie, G., et al., A randomized study of home-based electrical stimulation of the legs and conventional bicycle exercise training for patients with chronic heart failure, Eur. Heart J., 2003, vol. 24, no. 9, p. 871.CrossRefGoogle Scholar
  27. 27.
    Smart, N.A., Dieberg, G., and Giallauria, F., Functional electrical stimulation for chronic heart failure: a meta-analysis, Int. J. Cardiol., 2013, vol. 167, no. 1, p. 80.CrossRefGoogle Scholar
  28. 28.
    Sbruzzi, G., Ribeiro, R.A., Schaan, B.D., et al., Functional electrical stimulation in the treatment of patients with chronic heart failure: a meta-analysis of randomized controlled trials, Eur. J. Cardiovasc. Prev. Rehabil., 2010, vol. 17, no. 3, p. 254.CrossRefGoogle Scholar
  29. 29.
    Gondin, J., Cozzone, P.J., and Bendham, D., Is high-frequency neuromuscular electrical stimulation a suitable tool for muscular performance improvement in both healthy humans and athletes? Eur. J. Appl. Physiol., 2011, vol. 111, no. 10, p. 2473.CrossRefGoogle Scholar
  30. 30.
    Grigoriev, A.I., Kozlovskaya, I.B., Sawin, C.F., and Mueller, S.A., Countermeasures to short-term and long-term space flight, in Space Biology and Medicine, Vol. 4: Health, Performance, and Safety of Space Crews, Library of Flight, Reston, VA: Am. Inst. Aeronaut. Astronaut., 2000, ch. 8, p. 157.Google Scholar
  31. 31.
    Shenkman, B.S., Lyubaeva, E.V., Popov, D.V., et al., Chronic effects of low-intensity electrical stimulation of stretched human muscle, Acta Astronaut., 2007, vol. 60, p. 505.CrossRefGoogle Scholar
  32. 32.
    Mayr, W., Rafolt, D., Bijak, M., et al., Functional electric stimulation (FES) as a countermeasure against muscular atrophy in long-term space flight—first application onboard the MIR station, in 10 Years Space Biomedical Research in Austria, Szalkay, H.H., Ed., Vienna: Vienna Univ. Press, 2001, p. 86.Google Scholar
  33. 33.
    Fitts, R.H., Riley, D.R., and Widrick, J.J., Functional and structural adaptations of skeletal muscle to microgravity, J. Exp. Biol., 2001, vol. 204, no. 18, p. 3201.Google Scholar
  34. 34.
    Widrick, J.J., Romatowski, J.G., Norenberg, K.M., et al., Functional properties of slow and fast gastrocnemius muscle fibers after a 17-day spaceflight, J. Appl. Physiol., 2001, vol. 90, no. 6, p. 2203.CrossRefGoogle Scholar
  35. 35.
    Popov, D.V., Khusnutdinova, D.R., Shenkman, B.S., et al., Dynamics of physical performance during long-duration space flight (first results of “Countermeasure” experiment), J. Gravitational Physiol., 2004, vol. 11, no. 2, p. 231.Google Scholar
  36. 36.
    Shenkman, B., Belozerova, I., Nemirovskaya, T., et al., Time-course of human muscle fibre size reduction during head-down tilt bedrest, J. Gravitational Physiol., 1998, vol. 5, no. 1, p. 71.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. G. Poltavskaya
    • 1
    Email author
  • V. P. Sviridenko
    • 1
  • I. B. Kozlovskaya
    • 2
  • A. V. Brand
    • 1
  • D. A. Andreev
    • 1
  • I. V. Patchenskaya
    • 1
  • Yu. A. Koryak
    • 2
  • E. S. Tomilovskaya
    • 2
  • I. V. Saenko
    • 2
  • I. Yu. Giverts
    • 1
  • O. N. Dikur
    • 1
  • A. A. Doletsky
    • 1
  • A. L. Syrkin
    • 1
  1. 1.Sechenov First Moscow State Medical UniversityMoscowRussia
  2. 2.Institute of Biomedical Problems. Russian Academy of SciencesMoscowRussia

Personalised recommendations