Human Physiology

, Volume 44, Issue 6, pp 627–634 | Cite as

Features of EEG Spectral Parameters in Depressive Patients with Different Efficiencies of Decision-making

  • A. F. Iznak
  • E. V. Iznak
  • T. I. Medvedeva
  • I. V. Oleichik
  • E. R. Nikolaeva


We analyzed the relationships between the EEG spectral parameters in depressed patients reflecting the functional state of the brain, and the efficiency of their decision-making based on both logic and emotional learning in order to clarify the neurophysiological mechanisms underlying decision-making impairments. As a result of multivariate cluster analysis based on 96 EEG spectral power parameters, two subgroups of depressive patients were identified. The groups differ in the EEG amplitude-frequency and spatial characteristics, but do not differ either in age or in severity of depression. The subgroup of depressive patients who formed cluster 2 and had higher spectral powers of the EEG ∆ (2–4 Hz), θ1 (4–6 Hz), θ2 (6–8 Hz), α1 (8–9 Hz) and α2 (9–11 Hz) subbands, as compared with the patients who formed cluster 1, had a higher level of cognitive test performance that requires decision-making: the Wisconsin Card Sorting Test (WCST), which evaluates logic-based decision-making, and the Iowa Gambling Task (IGT), which evaluates decision-making based on emotional learning. Cluster 2 patients also exhibited a better long-term memorization (in the ten-word long-term memory test) compared with those who formed cluster 1. Judging by the EEG parameters, the neurophysiological mechanisms of inhibition are more intact in patients forming cluster 2 than in cluster 1 patients who have lower spectral power values of the EEG ∆ (2–4 Hz), θ1 (4–6 Hz), θ2 (6–8 Hz), α1 (8–9 Hz), and α2 (9–11 Hz) subbands. The impairment of decision-making functions in depressive patients may, at least partially, be due to the deficit of the brain inhibition mechanisms that ensure normal integrative brain activity, including such higher mental functions as memory, attention, and decision-making.


depression decision-making quantitative EEG 



  1. 1.
    Depression: WHO Statistics, Geneva: World Health Org., 011.Google Scholar
  2. 2.
    Reichenberg, A., Harvey, P.D., Bowie, C.R., et al., Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders, Schizophr. Bull., 2009, vol. 35, no. 5, p. 1022.CrossRefGoogle Scholar
  3. 3.
    Austin, M.P., Mitchell, P., and Goodwin, G.M., Cognitive deficits in depression: possible implications for functional neuropathology, Br. J. Psychiatry, 2001, vol. 178, p. 200.CrossRefGoogle Scholar
  4. 4.
    Cohen, R., Lohr, I., Paul, R., and Boland, R., Impairments of attention and effort among patients with major affective disorders, J. Neuropsychiatry Clin. Neurosci., 2001, vol. 13, no. 3, p. 385.CrossRefGoogle Scholar
  5. 5.
    Ellwart, T., Rinck, M., and Becker, E.S., Selective memory and memory deficits in depressed inpatients, Depression Anxiety, 2003, vol. 17, no. 4, p. 197.CrossRefGoogle Scholar
  6. 6.
    Farrin, L., Hull, L., Unwin, C., et al., Effects of depressed mood on objective and subjective measures of attention, J. Neuropsychiatry Clin. Neurosci., 2003, vol. 15, no. 1, p. 98.CrossRefGoogle Scholar
  7. 7.
    Stordal, K.I., Lundervold, A.J., Egeland, J., et al., Impairment across executive functions in recurrent major depression, Nord. J. Psychiatry, 2004, vol. 58, no. 1, p. 41.CrossRefGoogle Scholar
  8. 8.
    Castaneda, A.E., Tuulio-Henriksson, A., Marttunen, M., et al., A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults, J. Affective Disord., 2008, vol. 106, nos. 1–2, p. 1.CrossRefGoogle Scholar
  9. 9.
    Adida, M., Jollant, F., Clark, L., et al., Trait-related decision-making impairment in the three phases of bipolar disorder, Biol. Psychiatry, 2011, vol. 70, no. 4, p. 357.CrossRefGoogle Scholar
  10. 10.
    Must, A., Horvath, S., Nemeth, V.L., and Janka, Z., The Iowa Gambling Task in depression—what have we learned about sub-optimal decision-making strategies? Front. Psychol., 2013, vol. 4, p. 732.CrossRefGoogle Scholar
  11. 11.
    Iznak, A.F., Medvedeva, T.I., Iznak, E.V., et al., Disruption of neurocognitive decision-making mechanisms in depression, Hum. Physiol., 2016, vol. 42, no. 6, p. 598.CrossRefGoogle Scholar
  12. 12.
    Galderisi, S., Maj, M., Mucci, A., et al., Historical, psychopathological, neurological, and neuropsychological aspects of deficit schizophrenia: a multicenter study, Am. J. Psychiatry, 2002, vol. 159, p. 983.CrossRefGoogle Scholar
  13. 13.
    Cohen, A.S., Saperstein, A.M., Gold, J.M., et al., Neuropsychology of the deficit syndrome: new data and meta-analysis of findings to date, Schizophr. Bull., 2006, vol. 8, p. 608.Google Scholar
  14. 14.
    Medvedeva, T.I., Vorontsova, O.Yu., Barkhato-va, A.N., et al., Specifics of emotional biases in decision making in juvenile endogenous attack-like schizophrenia, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2014, vol. 114, no. 9, p. 53.CrossRefGoogle Scholar
  15. 15.
    Iznak, A.F., Iznak, E.V., Kornilov, V.V., and Kontsevoi, V.A., Neuropsychophysiological correlates of reactive depression, Hum. Physiol., 2011, vol. 37, no. 6, p. 682.CrossRefGoogle Scholar
  16. 16.
    Iznak, A.F., Iznak, E.V., Yakovleva, O.B., et al., Neurophysiological measures of treatment efficacy in lateonset depression, Neurosci. Behav. Physiol., 2013, vol. 43, no. 9, p. 1113.CrossRefGoogle Scholar
  17. 17.
    Iznak, A.F., Iznak, E.V., and Sorokin, S.A., Changes in EEG and reaction times during the treatment of apathetic depression, Neurosci. Behav. Physiol., 2013, vol. 43, no. 1, p. 79.CrossRefGoogle Scholar
  18. 18.
    Strelets, V.B., Ivanitskii, A.M., Ivanitskii, G.A., et al., Disorganization of cortical processes in depression, Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 1996, vol. 46, no. 2, p. 241.Google Scholar
  19. 19.
    Thibodeau, R., Jorgensen, R.S., and Kim, S., Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review, J. Abnorm. Psychol., 2006, vol. 115, no. 4, p. 715.CrossRefGoogle Scholar
  20. 20.
    Iznak, A.F. and Nikishova, M.B., Electrophysiological correlates of psychogenic disorders, Hum. Physiol., 2007, vol. 33, no. 2, p. 250.CrossRefGoogle Scholar
  21. 21.
    Mathersul, D., Williams, L.M., Hopkinson, P.J., and Kemp, A.H., Investigating models of affect: relationships among EEG alpha asymmetry, depression and anxiety, J. Biol. Psychol., 2008, vol. 80, p. 560.Google Scholar
  22. 22.
    ICD-10: International Statistical Classification of Diseases and Related Health Problems 10th Revision. The ICD-10 Classification of Mental and Behavioral Disorders: Clinical Descriptions and Diagnostic Guidelines, Geneva: World Health Org., 1992.Google Scholar
  23. 23.
    Hamilton, M.Y., Psychopathology of depressions: quantitative aspects, in Psychopathology of Depression, Helsinki, 1980, p. 201.Google Scholar
  24. 24.
    Heaton, R.K., WCST: CV4 Wisconsin Card Sorting Test: Computer Version 4, Lutz: Psychol. Assess. Resour., 2003.Google Scholar
  25. 25.
    Stuss, D.T., Levine, B., Alexander, M.P., et al., Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: effects of lesion location and test structure on separable cognitive processes, Neuropsychologia, 2000, vol. 38, no. 4, p. 388.CrossRefGoogle Scholar
  26. 26.
    Bechara, A., Damasio, A.R., Damasio, H., and Anderson, S.W., Insensitivity to future consequences following damage to human prefrontal cortex, Cognition, 1994, vol. 50, nos. 1–3, p. 7.CrossRefGoogle Scholar
  27. 27.
    Medvedeva, T.I., Enikolopova, E.V., and Enikolo-pov, S.N., Damasio’s somatic marker hypothesis and Iowa Gambling Task (IGT): review, Psikhol. Issled., 2013, no. 6, p. 12.Google Scholar
  28. 28.
    Luriya, A.R., Osnovy neiropsikhologii (Fundamentals of Neuropsychology), Moscow: Mosk. Gos. Univ., 2004, 3rd ed.Google Scholar
  29. 29.
    Mitrofanov, A.A., Komp’yuternaya sistema analiza i topograficheskogo kartirovaniya elektricheskoi aktivnosti mozga s neirometricheskim bankom EEG-dannykh (opisanie i primenenie) (A Computer System for the Analysis and Topographical Mapping of Brain Electrical Activity Using the Neurometric EEG Data Bank: Description and Applications), Moscow, 2005.Google Scholar
  30. 30.
    Gusel’nikov, V.I. and Iznak, A.F., Ritmicheskaya aktivnost’ v sensornykh sistemakh (Rhythmic Activity in Sensory Systems), Moscow: Mosk. Gos. Univ., 1983.Google Scholar
  31. 31.
    Bucci, P. and Galderisi, S., Physiological basis of EEG signal, in Standard Electroencephalography in Clinical Psychiatry: A Practical Handbook, Boutros, N.N., Galderisi, S., Pogarell, O., and Riggio, S., Eds., New York: Wiley, 2011, ch. 2, p. 7.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. F. Iznak
    • 1
  • E. V. Iznak
    • 1
  • T. I. Medvedeva
    • 1
  • I. V. Oleichik
    • 1
  • E. R. Nikolaeva
    • 1
  1. 1.Mental Health Research Centre,MoscowRussia

Personalised recommendations