Advertisement

Human Physiology

, Volume 44, Issue 6, pp 679–685 | Cite as

L-Arginine and Its Methylated Derivatives in the Blood of Athletes

  • M. A. Gilinsky
  • S. G. Krivoshchekov
  • T. B. Latysheva
  • S. E. Naumenko
  • O. M. Gilinskaya
  • R. I. Aizman
  • M. S. Golovin
  • N. V. Balioz
  • I. V. Karmakulova
Article
  • 11 Downloads

Abstract

The indices of the system of endogenous regulation of nitric oxide (NO) bioavailability of were compared in the group of athletes and the control group of subjects with a sedentary lifestyle. The concentrations of L-arginine (as a substrate of NO synthase and arginase) and its methylated derivatives monomethylarginine and asymmetric and symmetric dimethylarginines (MMA, ADMA and SDMA) in the blood were measured using high performance liquid chromatography (HPLC) with fluorescent detection. In parallel, some common biochemical blood parameters and the total antioxidant status were evaluated. The concentration of L-arginine in the blood plasma of athletes was 24% higher than the concentration in the control group. The levels of ADMA and SDMA were lower by 39 and 80%, respectively. The MMA level was almost two times higher than that in the control group. The total protein, bilirubin, total cholesterol, and triglyceride levels were significantly lower in athletes compared with the control. Interesting significant correlations were found between L-arginine and urea in the control group and between the Arg-to-ADMA ratio and the antioxidant activity index in the group of athletes.

Keywords:

nitric oxide L-arginine methylated arginine derivatives sports training 

Notes

REFERENCES

  1. 1.
    Aizman, R.I., Golovin, M.S., and Girenko, L.A., Psychophysiological indicators of skiers-racers and biathletes with different levels of sportsmanship, Teor. Prakt. Fiz. Kul’t., 2013, no. 4, p. 44.Google Scholar
  2. 2.
    Krivoschekov, S.G., Divert, V.E., Melnikov, V.N., et al., Comparative analysis of gas exchange and cardiorespiratory system responses of swimmers and skiers to increasing normobaric hypoxia and physical load, Hum. Physiol., 2013, vol. 39, no. 1, p. 98.CrossRefGoogle Scholar
  3. 3.
    Schneider, S., Brümmer, V., Abel, T., et al., Changes in brain cortical activity measured by EEG are related to individual exercise preferences, Physiol. Behav., 2009, vol. 98, no. 4, p. 447.CrossRefGoogle Scholar
  4. 4.
    Dubrovskii, V.I., Valeologiya: Zdorovyi obraz zhizni (Valeology: Healthy Lifestyle), Moscow: Ritorika-A., 2001, p. 4.Google Scholar
  5. 5.
    Afanas’eva, I.A., Cortisol level and phagocytic activity of leukocytes in athletes after high physical load, Uch. Zap. Univ. im. P.F. Lesgafta, 2009, no. 8, p. 6.Google Scholar
  6. 6.
    Nikulin, B.A. and Rodionova, I.I., Biokhimicheskii kontrol’ v sporte (Biochemical Control in Sports), Moscow: Sovetskii Sport, 2011, p. 6.Google Scholar
  7. 7.
    Divert, V.E., Krivoshchekov, S.G., and Vodyanit-sky, S.N., Individual-typological assessment of cardiorespiratory responses to hypoxia and hypercapnia in young healthy men, Hum. Physiol., 2015, vol. 41, no. 2, p. 166.CrossRefGoogle Scholar
  8. 8.
    Golovin, M.S., Balioz, N.V., Aizman, R.I., and Krivoshchekov, S.G., Effect of audiovisual stimulation on the psychophysiological functions in track and field athletes, Hum. Physiol., 2015, vol. 41, no. 5, p. 532.CrossRefGoogle Scholar
  9. 9.
    Urazaev, A.Kh. and Zefirov, A.L., The physiological role of nitric oxide, Usp. Fiziol. Nauk, 1999, vol. 30, no. 1, p. 54.Google Scholar
  10. 10.
    Gilinsky, M.A., Asymmetric dimethylarginine: metabolism, arginine paradox, and pathophysiology, Usp. Fiziol. Nauk, 2007, vol. 38, no. 3, p. 21.Google Scholar
  11. 11.
    Sukhovershin, R.A., Yepuri, G., and Ghebrema-riam, Y.T., Endothelium-derived nitric oxide as an antiatherogenic mechanism: implications for therapy, Methodist Debakey Cardiovasc. J., 2015, vol. 11, no. 3, p. 166.CrossRefGoogle Scholar
  12. 12.
    Teerlink, T., Determination of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine in biological samples by HPLC, Methods Mol. Med., 2005, vol. 108, p. 263.Google Scholar
  13. 13.
    Deneva-Koycheva, T.I., Vladimirova-Kitova1, L.G., Angelova, E.A., and Tsvetkova, T.Z., Plasma asymmetric dimethylarginine levels in healthy people, Folia Med., 2011, vol. 53, no. 1, p. 28.CrossRefGoogle Scholar
  14. 14.
    Schwedhelm, E., Xanthakis, V., Maas, R., et al., Asymmetric dimethylarginine reference intervals determined with liquid chromatography–tandem mass spectrometry: results from the Framingham offspring cohort, Clin. Chem., 2009, vol. 55, no. 8, p. 1539.CrossRefGoogle Scholar
  15. 15.
    Chen, S., Li, N., Deb-Chatterji, M., et al., Asymmetric dimethyarginine as marker and mediator in ischemic stroke, Int. J. Mol. Sci., 2012, vol. 13, no. 12, p. 15983.CrossRefGoogle Scholar
  16. 16.
    Cooke, J.P., Asymmetrical dimethylarginine: the Uber marker? Circulation, 2004, vol. 109, p. 1813.CrossRefGoogle Scholar
  17. 17.
    Schwedhelm, E. and Böger, R.H., The role of asymmetric and symmetric dimethylarginines in renal disease, Nat. Rev. Nephrol., 2011, vol. 7, no. 5, p. 275.CrossRefGoogle Scholar
  18. 18.
    Boger, R.H., Association of asymmetric dimethylarginine and endothelial dysfunction, Clin. Chem. Lab. Med., 2003, vol. 41, no. 11, p. 1467.CrossRefGoogle Scholar
  19. 19.
    Solov’eva, L.N., Shmonin, A.A., Emanuel’, Y.V., et al., The clinical laboratory markers of atherosclerosis in patients with atherothrombotic stroke, Klin. Lab. Diagn., 2015, vol. 60, no. 10, p. 12.Google Scholar
  20. 20.
    Schlesinger, S., Sonntag, S.R., Lieb, W., and Maas, R., Asymmetric and symmetric dimethylarginine as risk markers for total mortality and cardiovascular outcomes: a systematic review and meta-analysis of prospective studies, PLoS One, 2016, vol. 11, no. 11, p. e0165811. doi 10.1371/journal.pone.0165811CrossRefGoogle Scholar
  21. 21.
    Gilinsky, M.A., Latysheva, T.V., and Petrakova, G.M., Dimethylarginines and serotonin in the blood of spontaneously hypertensive rats, Bull. Exp. Biol. Med., 2009, vol. 148, no. 6, p. 849.CrossRefGoogle Scholar
  22. 22.
    Deneva-Koycheva, T.I., Vladimirova-Kitova1, L.G., Angelova, E.A., and Tsvetkova, T.Z., Plasma asymmetric dimethylarginine levels in healthy people, Folia Med., 2011, vol. 53, no. 1, p. 28.CrossRefGoogle Scholar
  23. 23.
    Notsu, Y., Yano, S., Shibata, H., et al., Plasma arginine/ADMA ratio as a sensitive risk marker for atherosclerosis: Shimane CoHRE study, Atherosclerosis, 2015, vol. 239, no. 1, p. 61.CrossRefGoogle Scholar
  24. 24.
    Vasilenko, V.S., Semenova, E.S., and Semeno-va, Yu.B., Blood lipids in athletes depending on the specificity of training process, Pediatriya, 2017, vol. 8, no. 2, p. 10.Google Scholar
  25. 25.
    Herzberg, G.R., Aerobic exercise, lipoproteins, and cardiovascular disease: benefits and possible risks, Can. J. Appl. Physiol., 2004, vol. 29, no. 6, p. 800.CrossRefGoogle Scholar
  26. 26.
    Pastor, C.M., Morris, S.M., Jr., and Billiar, T.R., Sources of arginine for induced nitric oxide synthesis in the isolated perfused liver, Am. J. Physiol., 1995, vol. 269, no. 6, p. 861.Google Scholar
  27. 27.
    Hey, C., Boucher, J.L., Vadon-Le Goff, S., et al., Inhibition of arginase in rat and rabbit alveolar macrophages by N omega-hydroxy-D,L-indospicine, effects on L-arginine utilization by nitric oxide synthase, Br. J. Pharmacol., 1997, vol. 121, no. 3, p. 395.CrossRefGoogle Scholar
  28. 28.
    Sies, H., Total antioxidant capacity: appraisal of a concept, J. Nutr., 2007, vol. 137, no. 6, p. 1493.CrossRefGoogle Scholar
  29. 29.
    Newsholme, P., De Bittencourt, P.I., O’Hagan, C., et al., Exercise and possible molecular mechanisms of protection from vascular disease and diabetes: the central role of ROS and nitric oxide, Clin. Sci., 2009, vol. 118, no. 5, p. 341.CrossRefGoogle Scholar
  30. 30.
    Högström, G., Nordström, A., and Nordström, P., High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: a nationwide cohort study in men, Eur. Heart. J., 2014, vol. 35, no. 44, p. 3133.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. A. Gilinsky
    • 1
  • S. G. Krivoshchekov
    • 1
  • T. B. Latysheva
    • 1
  • S. E. Naumenko
    • 1
  • O. M. Gilinskaya
    • 1
  • R. I. Aizman
    • 2
  • M. S. Golovin
    • 2
  • N. V. Balioz
    • 1
  • I. V. Karmakulova
    • 1
  1. 1.Research Institute of Physiology and Basic MedicineNovosibirskRussia
  2. 2.Novosibirsk State Pedagogical UniversityNovosibirskRussia

Personalised recommendations