Human Physiology

, Volume 44, Issue 6, pp 686–695 | Cite as

Control of Human Motor Rehabilitation Devices

  • I. V. OrlovEmail author
  • Yu. K. Stolbkov
  • Yu. P. Gerasimenko


The loss of limbs or limitations to their motor functions leads to a critical deterioration of the human quality of life. This article presents a brief review about the evolution of prosthetics, the dawn of which dates back to antiquity, and shows its transition to new technologies between the two world wars and in the contemporary era. The authors discuss the interfaces developed for controlling the recovery of lost limb functions, based on the optimal choice of assistive devices and artificial bypassing from the brain to the spinal cord with a closed feedback loop. The review gives the current classification and application of control interfaces (both invasive and noninvasive) for the recovery of functions, using electroencephalogram (EEG) components (including brain–computer interfaces (BCIs)), as well as electrical and other myogram components. The interfaces are discussed in terms of changes in the physical characteristics of muscles during their contraction and vibration and other properties. The article considers challenges and global demands for specialized treatment as exemplified by American statistical data on spinal cord lesions.


limb prostheses myoelectric prostheses brain–computer interfaces interfaces based on EEG components interfaces based on electrical and other muscle characteristics 



  1. 1.
    Zuo, K.J. and Olson, J.L., The evolution of functional hand replacement: from iron prostheses to hand transplantation, Can. J. Plast. Surg., 2014, vol. 22, no. 1, p. 44.CrossRefGoogle Scholar
  2. 2.
    Loveland, J. and Schmitt, S., Poinsinet’s edition of the Naturalis historia (1771–1782) and the revival of pliny in the sciences of the enlightenment, Ann. Sci., 2015, vol. 72, no. 1, p. 2.CrossRefGoogle Scholar
  3. 3.
    Kobrinskii, A.E., Breido, M.G., Gurfinkel’, V.S., et al., Bioelectric control system, Dokl. Akad. Nauk SSSR, 1957, vol. 117, no. 1, p. 78.Google Scholar
  4. 4.
    Yakobson, Ya.S., Kobrinskii, A.E., Polyan, E.P., Popov, B.P., Slavutskii, Ya.L., and Sysin, A.Ya., USSR Inventor’s Certificate no. 120300, Byull. Izobret., 1959, no. 11.Google Scholar
  5. 5.
    Popov, B., The bioelectrically controlled prosthesis, J. Bone Joint Surg. Br., 1965, vol. 47, p. 421.CrossRefGoogle Scholar
  6. 6.
    Vorob’ev, A.A., Andryushchenko, F.A., Zasypkina, O.A., et al., Terminology and classification of exoskeletons, Vestn. Volgograd. Gos. Med. Univ., 2015, no. 3 (55), p. 71.Google Scholar
  7. 7.
    Vorob’ev, A.A., Andryushchenko, F.A., Zasypkina, O.A., and Krivonozhkina, P.S., Determination of the anatomically dependent parameters of the exoskeleton of the upper limb, EXAR, Volgograd. Nauchno-Med. Zh., 2015, no. 1, p. 58.Google Scholar
  8. 8.
    Vereikin, A.A., Use of exoskeletons in the industrial and construction industry: development history, types, and classification, 2015. 18/part_1/.Google Scholar
  9. 9.
    Exoskeleton. Экзocкeлeт#cite_note-4Google Scholar
  10. 10.
    LoboPrat, J., Kooren, P.N., Stienen, A.H.A., et al., Noninvasive control interfaces for intention detection in active movement assistive devices, J. NeuroEng. Rehabil., 2014, vol. 11, no. 1, p. 168.Google Scholar
  11. 11.
    Bos, R.A., Haarman, C.J.W., Stortelder, T., et al., A structured overview of trends and technologies used in dynamic hand orthoses, J. NeuroEng. Rehabil., 2016, vol. 13, p. 62.CrossRefGoogle Scholar
  12. 12.
    Fetz, E.E., Operant conditioning of cortical unit activity, Science, 1969, vol. 163, p. 955.CrossRefGoogle Scholar
  13. 13.
    Lebedev, M.A. and Nicolelis, M.A., Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation, Physiol. Rev., 2017, vol. 97, no. 2, p. 767.CrossRefGoogle Scholar
  14. 14.
    Collinger, J.L., Wodlinger, B., Downey, J.E., et al., High-performance neuroprosthetic control by an individual with tetraplegia, Lancet, 2013, vol. 381, no. 9866, p. 557.CrossRefGoogle Scholar
  15. 15.
    Ethier, C., Oby, E.R., Bauman, M.J., and Miller, L.E., Restoration of grasp following paralysis through brain-controlled stimulation of muscles, Nature, 2012, vol. 485, p. 368.CrossRefGoogle Scholar
  16. 16.
    Capogrosso, M., Milekovic, T., Borton, D., et al., Brain–spinal interface alleviating gait deficits after spinal cord injury in primates, Nature, 2016, vol. 539, no. 7628, p. 284.CrossRefGoogle Scholar
  17. 17.
    Oxley, T.J., Opie, N.L., John, S.E., et al., Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity, Nat. Biotechnol., 2016, vol. 34, no. 3, p. 320.CrossRefGoogle Scholar
  18. 18.
    Kaplan, A.Ya., Neurophysiological foundations and practical realizations of the brain–machine interfaces in the technology in neurological rehabilitation, Hum. Physiol., 2016, vol. 42, no. 1, p. 103.CrossRefGoogle Scholar
  19. 19.
    Korik, A., Sosnik, R., Siddique, N., and Coyle, D., 3D hand motion trajectory prediction from EEG mu and beta bandpower, Prog. Brain Res., 2016, vol. 228, p. 71.CrossRefGoogle Scholar
  20. 20.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., et al., Brain–computer interfaces for communication and control, Clin. Neurophysiol., 2002, vol. 113, p. 767.CrossRefGoogle Scholar
  21. 21.
    Marchesotti, S., Martuzzi, R., Schurger, A., et al., Cortical and subcortical mechanisms of brain–machine interfaces, Hum. Brain Mapp., 2017, vol. 38, no. 6, p. 2971.CrossRefGoogle Scholar
  22. 22.
    Lee, J.-H., Ryu, J., Jolesz, F.A., et al., Brain–machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm, Neurosci. Lett., 2009, vol. 450, p. 1.CrossRefGoogle Scholar
  23. 23.
    Simpson, R.C. and Levine, S.P., Voice control of a powered wheelchair, IEEE Trans. Neural Syst. Rehabil. Eng., 2002, vol. 10, p. 122.CrossRefGoogle Scholar
  24. 24.
    Weiskopf, N., Real-time fMRI and its application to neurofeedback, NeuroImage, 2012, vol. 62, p. 682.CrossRefGoogle Scholar
  25. 25.
    Naito, M., Michioka, Y., Ozawa, K., et al., A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light, IEICE Trans. Inf. Syst., 2007, vol. E90-D, no. 7, p. 1028.CrossRefGoogle Scholar
  26. 26.
    Sorger, B., Reithler, J., Dahmen, B., and Goebel, R., A real-time fMRI-based spelling device immediately enabling robust motor-independent communication, Curr. Biol., 2012, vol. 22, p. 1333.CrossRefGoogle Scholar
  27. 27.
    Misawa, T., Goto, K., Takano, S., and Hirobayashi, S., A development of NIRS-based brain-computer interface for robot control, IEEJ Trans. Sens. Micromach., 2012, vol. 132, p. 355.CrossRefGoogle Scholar
  28. 28.
    Geethanjali, P., Myoelectric control of prosthetic hands: state-of-the-art review, Med. Devices: Evidence Res., 2016, vol. 9, p. 247.CrossRefGoogle Scholar
  29. 29.
    Kuiken, T.A., Li, G., Lock, B.A., et al., Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms, JAMA, J. Am. Med. Assoc., 2009, vol. 301, no. 6, p. 619.CrossRefGoogle Scholar
  30. 30.
    Miller, L.A., Lipschutz, R.D., Stubblefield, K.A., et al., Control of a six degree of freedom prosthetic arm after targeted muscle reinnervation surgery, Arch. Phys. Med. Rehabil., 2008, vol. 89, p. 2057.CrossRefGoogle Scholar
  31. 31.
    Farina, D., Jiang, N., Rehbaum, H., et al., The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges, IEEE Trans. Neural Syst. Rehabil. Eng., 2014, vol. 22, no. 4, p. 797.CrossRefGoogle Scholar
  32. 32.
    Weir, R.F., Troyk, P.R., DeMichele, G.A., et al., Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording, IEEE Trans. Biomed. Eng., 2009, vol. 56, no. 1, p. 159.CrossRefGoogle Scholar
  33. 33.
    Silva, J., Heim, W., and Chau, T., A self-contained, mechanomyography-driven externally powered prosthesis, Arch. Phys. Med. Rehabil., 2005, vol. 86, no. 10, p. 2066.CrossRefGoogle Scholar
  34. 34.
    Orizio, C., Muscle sound: bases for the introduction of a mechanomyographic signal in muscle studies, Crit. Rev. Biomed. Eng., 1993, vol. 21, p. 201.Google Scholar
  35. 35.
    Han, H., Han, H., and Kim, J., Development of real-time muscle stiffness sensor based on resonance frequency for physical human robot interactions, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2012, vol. 2012, p. 2367.Google Scholar
  36. 36.
    Betke, M., Gips, J., and Fleming, P., The camera mouse: visual tracking of body features to provide computer access for people with severe disabilities, IEEE Trans. Neural Syst. Rehabil. Eng., 2002, vol. 10, no. 1, p. 1.CrossRefGoogle Scholar
  37. 37.
    Struijk, L.N., Lontis, E.R., Bentsen, B., et al., Fully integrated wireless inductive tongue computer interface for disabled people, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2009, vol. 2009, p. 547.Google Scholar
  38. 38.
    Craig, D.A. and Nguyen, H., Wireless real-time head movement system using a personal digital assistant (PDA) for control of a power wheelchair, 27th Annual Int. Conf. the IEEE Engineering in Medicine and Biology Society., Piscataway, NJ: IEEE Eng. Med. Biol. Soc., 2005, vol. 1, p. 772.Google Scholar
  39. 39.
    Johnson, G.R., Carus, D.A., Parrini, G., et al., The design of a five-degree-of-freedom powered orthosis for the upper limb, Proc. Inst. Mech. Eng., Part H, 2001, vol. 215, p. 275.Google Scholar
  40. 40.
    Angeli, C.A., Edgerton, V.R., Gerasimenko, Y.P., and Harkema, S.J., Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans, Brain, 2014, vol. 137, no. 5, p. 1394.CrossRefGoogle Scholar
  41. 41.
    Grahn, P.J., Lavrov, I.A., Sayenko, D.G., et al., Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia, Mayo Clin. Proc., 2017, vol. 92, no. 4, p. 544.CrossRefGoogle Scholar
  42. 42.
    Biryukova, E.V., Pavlova, O.G., Kurganskaya, M.E., et al., Recovery of the motor function of the arm with the aid of a hand exoskeleton controlled by a brain–computer interface in a patient with an extensive brain lesion, Hum. Physiol., 2016, vol. 42, no. 1, p. 13.CrossRefGoogle Scholar
  43. 43.
    Ganin, I.P. and Kaplan, A.Ya., P300-based brain–computer interface: complex incentives “backlight + movement,” Zh. Vyssh. Nervn. Deyat. im. I.P. Pavlova, 2014, vol. 64, no. 1, p. 32.Google Scholar
  44. 44.
    Ganin, I.P., Shishkin, S.L., Kochetova, A.G., and Kaplan, A.Ya., P300-based brain–computer interface: the effect of the stimulus position in a stimulus train, Hum. Physiol., 2012, vol. 38, no. 2, p. 121.CrossRefGoogle Scholar
  45. 45.
    Kaplan, A.Ya., Kochetova, A.G., Shishkin, S.L., et al., Experimental-theoretical basis and use of “brain–computer interface” technology, Byull. Sib. Med., 2013, vol. 12, no. 2, p. 21.Google Scholar
  46. 46.
    Mokienko, O.A., Lyukmanov, R.Kh., Cherniko-va, L.A., et al., Brain–computer interface: the first experience of clinical use in Russia, Hum. Physiol., 2016, vol. 42, no. 1, p. 24.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • I. V. Orlov
    • 1
    Email author
  • Yu. K. Stolbkov
    • 1
  • Yu. P. Gerasimenko
    • 1
  1. 1.Pavlov Institute of Physiology, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations