Advertisement

Human Physiology

, Volume 43, Issue 7, pp 802–807 | Cite as

Toll-Like Receptors in Peripheral Blood Cells of Cosmonauts after Long-term Missions on Board the International Space Station

  • T. A. Berendeeva
  • S. A. Ponomarev
  • E. N. Antropova
  • M. P. Rykova
Article
  • 10 Downloads

Abstract

Studies of Toll-like receptors (TLR) in 20 cosmonauts, members of long-term (124- to 199-day) missions on board the International Space Station showed changes in the relative and absolute counts of peripheral blood monocytes with TLR2, TLR4, and TLR6 on their surface, expression of genes TLR2 and TLR6, as well as genes of molecules involved in the TLR signaling pathway and TLR-related NF-κB-, JNK/p38- and IRF pathways on the day of return to Earth. The observed changes displayed individual variability.

Keywords

immunity system Toll-like receptors (TLR) space missions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lebedev, K.A. and Ponyakina, I.D., Immunologiya obrazraspoznayushchikh retseptorov (integral’naya immunologiya) (Immunology of Pattern Recognizing Receptors: Integrated Immunology), Moscow: Librokom, 2009.Google Scholar
  2. 2.
    Medzhitov, R., Recognition of microorganisms and activation of the immune response, Nature, 2007, vol. 149, no. 18, pp. 819–826.CrossRefGoogle Scholar
  3. 3.
    Erridge, C., Endogenous ligands of TLR2 and TLR4: agonists or assistants? J. Leukocyte Biol., 2010, vol. 87, no. 6, pp. 989–999.CrossRefPubMedGoogle Scholar
  4. 4.
    Akira, S., Uematsu, S., and Takeuchi, O., Pathogen recognition and innate immunity, Cell, 2006, vol. 124, pp. 783–801.CrossRefPubMedGoogle Scholar
  5. 5.
    Parker, L.C., Prince, L.R., and Sabroe, I., Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity, Clin. Exp. Immunol., 2007, vol. 147, pp. 199–207.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cook, D.N., Pisetsky, D.S., and Schwartz, D.A., Tolllike receptors in the pathogenesis of human disease, Nat. Immunol., 2004, vol. 5, pp. 975–979.CrossRefPubMedGoogle Scholar
  7. 7.
    Kawai, T. and Akira, S., The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors, Nat. Immunol., 2010, vol. 11, no. 5, pp. 373–384.CrossRefPubMedGoogle Scholar
  8. 8.
    Montero Vega, M.T. and de Andrés Martín, A., The significance of Toll-like receptors in human diseases, Allergol. Immunopathol., 2009, vol. 37, pp. 252–263.CrossRefGoogle Scholar
  9. 9.
    Lebeis, S.L., TLR signaling mediated by MyD88 is required for a protective innate immune response by neutrophils to Citrobacter rodentium, J. Immunol., 2007, vol. 179, pp. 566–577.CrossRefPubMedGoogle Scholar
  10. 10.
    Picard, C., Puel, A., Bonnet, M., et al., Pyogenic bacterial infections in humans with IRAK-4 deficiency, Science, 2003, vol. 299, pp. 2076–2079.CrossRefPubMedGoogle Scholar
  11. 11.
    Kawai, T. and Akira, S., Innate immune recognition of viral infection, Nat. Immunol., 2006, vol. 7, no. 2, pp. 131–137.CrossRefPubMedGoogle Scholar
  12. 12.
    O’Neill, L.A., Fitzgerald, K.A., and Bowie, A.G., The Toll-IL1 receptor adaptor family grows to five members, Trends Immunol., 2003, vol. 24, no. 6, pp. 287–290.Google Scholar
  13. 13.
    Asea, A., Rehli, M., Kabingu, E., et al., Novel signal transduction pathway utilized by extracellular HSP70: role of Toll-like receptor (TLR) 2 and TLR4, J. Biol. Chem., 2002, vol. 277, no. 17, pp. 15028–15034.CrossRefPubMedGoogle Scholar
  14. 14.
    Beere, H.M. and Green, D.R., Stress management— heat shock protein-70 and the regulation of apoptosis, Trends Cell. Biol., 2001, vol. 11, pp. 6–10.CrossRefPubMedGoogle Scholar
  15. 15.
    Wendling, U., Paul, L., van der Zee, R., et al., A conserved mycobacterial heat shock protein (HSP) 70 sequence prevents adjuvant arthritis upon nasal administration and induces IL10-producing T-cells that cross-react with the mammalian self-HSP70 homologue, J. Immunol., 2000, vol. 164, no. 5, pp. 2711–2717.CrossRefPubMedGoogle Scholar
  16. 16.
    Morukov, B.V., Rykova, M.P., Antropova, E.N., et al., The human immune system, in Kosmicheskaya meditsina i biologiya (Space Medicine and Biology), Grigor’ev, A.I. and Uchakov, I.B., Eds., Voronezh: Nauchnaya Kniga, 2013, pp. 449–453.Google Scholar
  17. 17.
    Krishnan, J., Lee, G., and Choi, S., Drugs targeting Toll-like receptors, Arch. Pharm. Res., 2009, vol. 32, no. 11, pp. 1485–1502.CrossRefPubMedGoogle Scholar
  18. 18.
    Marsland, A.L., Bachen, E.A., Cohen, S., et al., Stress, immune reactivity and susceptibility to infectious disease, Physiol. Behav., 2002, vol. 77, nos. 1–2, pp. 711–716.CrossRefPubMedGoogle Scholar
  19. 19.
    Sieber, W.J., Rodin, J., Larson, L., et al., Modulation of human natural killer cell activity by exposure to uncontrollable stress, Brain Behav. Immunol., 1992, vol. 6, pp. 141–156.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  • T. A. Berendeeva
    • 1
  • S. A. Ponomarev
    • 1
  • E. N. Antropova
    • 1
  • M. P. Rykova
    • 1
  1. 1.Institute for Biomedical ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations