Advertisement

Human Physiology

, Volume 41, Issue 3, pp 296–303 | Cite as

The effect of single aerobic exercise on the regulation of mitochondrial biogenesis in skeletal muscles of trained men: A time-course study

  • D. V. PopovEmail author
  • E. A. Lysenko
  • T. F. Miller
  • A. V. Bachinin
  • D. V. Perfilov
  • O. L. Vinogradova
Article

Abstract

The study focused on the effects of duration of a single aerobic exercise session of moderate intensity (60% of {ie296-1}) on the activation of PGC-1α gene expression-regulating signaling kinases and the expression of the genes that regulate mitochondrial biogenesis and play a role in regulating catabolism. Nine athletes ({ie296-2} 59 mL/min/kg) cycled on a ergometer for 30, 60, and 90 min. A exercise-induced increase in PGC-1α gene expression was found to occur without activation of the kinases AMPK, p38 MAPK, and CaMKII. A comparable increase in PGC-1α gene expression was observed after 60- and 90-min exercises, while VEGFA gene expression increased only after 90-min exercise. Even 90-min exercise of the given intensity did not activate the FOXO1-E3 ubiquitin ligase pathway, nor did it increase the expression of catabolism-regulating genes.

Keywords

exercise skeletal muscle gene expression PGC-1α 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Egan, B., Carson, B.P., Garcia-Roves, P.M., et al., Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signaling kinases in human skeletal muscle, J. Physiol., 2010, vol. 588,part 10, p. 1779.CrossRefGoogle Scholar
  2. 2.
    Brenmoehl, J. and Hoeflich, A., Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3, Mitochondrion, 2013, vol. 13, no. 6, p. 755.CrossRefGoogle Scholar
  3. 3.
    Little, J.P., Safdar, A., Cermak, N., et al., Acute endurance exercise increases the nuclear abundance of PGC-1α in trained human skeletal muscle, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, vol. 298, no. 4, p. R912.CrossRefGoogle Scholar
  4. 4.
    Olesen, J., Kiilerich, K., and Pilegaard, H., PGC-1α-mediated adaptations in skeletal muscle, Pflugers Arch., 2010, vol. 460, no. 1, p. 153.CrossRefGoogle Scholar
  5. 5.
    Chinsomboon, J., Ruas, J., Gupta, R.K., et al., The transcriptional coactivator PGC-1α mediates exerciseinduced angiogenesis in skeletal muscle, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 50, p. 21 401.CrossRefGoogle Scholar
  6. 6.
    Chen, Z.P., Stephens, T.J., Murthy, S., et al., Effect of exercise intensity on skeletal muscle AMPK signaling in humans, Diabetes, 2003, vol. 52, no. 9, p. 2205.CrossRefGoogle Scholar
  7. 7.
    Fujii, N., Hayashi, T., Hirshman, M.F., et al., Exercise induces isoform-specific increase in 5′-AMP-activated protein kinase activity in human skeletal muscle, Biochem. Biophys. Res. Commun., 2000, vol. 273, no. 3, p. 1150.CrossRefGoogle Scholar
  8. 8.
    Sriwijitkamol, A., Coletta, D.K., Wajcberg, E., et al., Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: A time-course and dose-response study, Diabetes, 2007, vol. 56, no. 3, p. 836.CrossRefGoogle Scholar
  9. 9.
    Rasmussen, B.B. and Winder, W.W., Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase, J. Appl. Physiol., 1997, vol. 83, no. 4, p. 1104.CrossRefGoogle Scholar
  10. 10.
    Rose, A.J., Kiens, B., and Richter, E.A., Ca2+-calmodulin-dependent protein kinase expression and signaling in skeletal muscle during exercise, J. Physiol., 2006, vol. 574,part 3, p. 889.CrossRefGoogle Scholar
  11. 11.
    Nordsborg, N.B., Lundby, C., Leick, L., and Pilegaard, H., Relative workload determines exerciseinduced increases in PGC-1α mRNA, Med. Sci. Sports Exerc., 2010, vol. 42, no. 8, p. 1477.CrossRefGoogle Scholar
  12. 12.
    Popov, D., Zinovkin, R., Karger, E., et al., Effects of continuous and intermittent aerobic exercise upon mRNA expression of metabolic genes in human skeletal muscle, J. Sports Med. Physical Fitness, 2014, vol. 54, p. 362.Google Scholar
  13. 13.
    Edgett, B.A., Foster, W.S., Hankinson, P.B., et al., Dissociation of increases in PGC-1α and its regulators from exercise intensity and muscle activation following acute exercise, PLoS One, 2013, vol. 8, no. 8, p. e71623.CrossRefGoogle Scholar
  14. 14.
    Widegren, U., Jiang, X.J., Krook, A., et al., Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle, FASEB J., 1998, vol. 12, no. 13, p. 1379.CrossRefGoogle Scholar
  15. 15.
    Rose, A.J., Broholm, C., Kiillerich, K., et al., Exercise rapidly increases eukaryotic elongation factor 2 phosphorylation in skeletal muscle of men, J. Physiol., 2005, vol. 569,part 1, p. 223.CrossRefGoogle Scholar
  16. 16.
    Kumar, V., Atherton, P., Smith, K., and Rennie, M.J., Human muscle protein synthesis and breakdown during and after exercise, J. Appl. Physiol., 2009, vol. 106, no. 6, p. 2026.CrossRefGoogle Scholar
  17. 17.
    Wilkinson, S.B., Phillips, S.M., Atherton, P.J., et al., Differential effects of resistance and endurance exercise in the fed state on signaling molecule phosphorylation and protein synthesis in human muscle, J. Physiol., 2008, vol. 586,part 15, p. 3701.CrossRefGoogle Scholar
  18. 18.
    Krawiec, B.J., Nystrom, G.J., Frost, R.A., et al., AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells, Am. J. Physiol. Endocrinol. Metab., 2007, vol. 292, no. 6, p. E1555.CrossRefGoogle Scholar
  19. 19.
    Nakashima, K. and Yakabe, Y., AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes, Boisci. Biotechnol. Biochem., 2007, vol. 71, no. 7, p. 1650.CrossRefGoogle Scholar
  20. 20.
    Perry, C.G., Lally, J., Holloway, G.P., et al., Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle, J. Physiol., 2010, vol. 588,part 23, p. 4795.CrossRefGoogle Scholar
  21. 21.
    Egan, B., O’Connor, P.L., Zierath, J.R., and O’Gorman, D.J., Time course analysis reveals gene-specific transcript and protein kinetics of adaptation to shortterm aerobic exercise training in human skeletal muscle, PLoS One, 2013, vol. 8, no. 9, p. e74098.CrossRefGoogle Scholar
  22. 22.
    Hayot, M., Michaud, A., Koechlin, C., et al., Skeletal muscle microbiopsy: A validation study of a minimally invasive technique, Eur. Respir. J., 2005, vol. 25, no. 3, p. 431.CrossRefGoogle Scholar
  23. 23.
    Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acid Res., 2001, vol. 29, no. 9, p. e45.CrossRefGoogle Scholar
  24. 24.
    Tadaishi, M., Miura, S., Kai, Y., et al., Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1α mRNA: A role of β(2)-adrenergic receptor activation, Am. J. Physiol. Endocrinol. Metab., 2011, vol. 300, no. 2, p. E341.CrossRefGoogle Scholar
  25. 25.
    Wen, X., Wu, J., Chang, J.S., et al., Effect of exercise intensity on isoform-specific expressions of NT-PGC-1α mRNA in mouse skeletal muscle, Biomed. Re. Int., 2014, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106048/.Google Scholar
  26. 26.
    Popov, D.V., Bachinin, A.V., Lysenko, E.A., et al., Exercise-induced expression of peroxisome proliferator-activated receptor γ coactivator-1α isoforms in skeletal muscle of endurance-trained males, J. Physiol. Sci., 2014, vol. 64, no. 5, p. 317.CrossRefGoogle Scholar
  27. 27.
    Popov, D.V., Zinovkin, R.A., Karger, E.M., et al., The effect of aerobic exercise on the expression of genes in skeletal muscles of trained and untrained men, Hum. Physiol., 2013, vol. 39, no. 2, p. 190.CrossRefGoogle Scholar
  28. 28.
    Thom, R., Rowe, G.C., Jang, C., et al., Hypoxic induction of vascular endothelial growth factor (VEGF) and angiogenesis in muscle by truncated peroxisome proliferator-activated receptor γ coactivator (PGC)-1α, J. Biol. Chem., 2014, www.jbc.org/con-tent/289/13/8810.long.Google Scholar
  29. 29.
    Jun, H.J., Gettys, T.W., and Chang, J.S., Transcriptional activity of PGC-1α and NT-PGC-1α is differentially regulated by Twist-1 in brown fat metabolism, PPAR Res., 2012, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474972/.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  • D. V. Popov
    • 1
    • 2
    Email author
  • E. A. Lysenko
    • 1
  • T. F. Miller
    • 1
  • A. V. Bachinin
    • 1
  • D. V. Perfilov
    • 1
  • O. L. Vinogradova
    • 1
    • 2
  1. 1.Institute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations