Advertisement

Human Physiology

, Volume 38, Issue 3, pp 303–309 | Cite as

Interaction of 0.1-Hz oscillations in heart rate variability and distal blood flow variability

  • A. R. Kiselev
  • V. S. Khorev
  • V. I. Gridnev
  • M. D. Prokhorov
  • A. S. Karavaev
  • O. M. Posnenkova
  • V. I. Ponomarenko
  • B. P. Bezruchko
  • V. A. Shvartz
Article

Abstract

Biophysical features of 0.1-Hz oscillations of heart rate variability (HRV) and distal blood flow (DBF) variability were compared in healthy subjects and patients after acute myocardial infarction (MI). Patients with acute MI (72 men and 53 women; 125 in total) and healthy subjects (23 men and 10 women; 33 in total) aged 30–83 and 20–46 years, respectively, participated in the study. The patients were involved in the study for a year after acute MI. The delay in coupling 0.1-Hz oscillations of HRV and DBF variability was estimated. In healthy subjects, the delay in the heart → DBF coupling proved to be less than the delay in the DBF → heart coupling. Acute MI results mainly in disruption of the heart → DBF coupling, which is partially restored by the end of the first year after acute MI, though it remains lower than in healthy subjects. The DBF → heart coupling is rapidly restored to the level of healthy subjects within three weeks after acute MI.

Keywords

0.1-Hz oscillations heart rate variability distal blood flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernardi, L., Passino, C., Spadacini, G., et al., Arterial Baroreceptor as Determinants of 0.1 Hz and Respiration-Related Changes in Blood Pressure and Heart Rate Spectra, in Frontiers of Blood Pressure and Heart Rate Analysis, Amsterdam: IOS, 1997.Google Scholar
  2. 2.
    Bernardi, L., Rossi, M., Fratino, P., et al., Relationship between Changes in Human Skin Blood Flow and Autonomic Tone, Microvasc. Res., 1989, vol. 37, p. 16.PubMedCrossRefGoogle Scholar
  3. 3.
    Bernardi, L., Rossi, M., Leuzzi, S., et al., Reduction of 0.1 Hz Microcirculatory Fluctuations as Evidence of Sympathetic Dysfunction in Insulin-Dependent Diabetes, Cardiovasc. Res, 1997, vol. 34, p. 185.PubMedCrossRefGoogle Scholar
  4. 4.
    Bernardi, L., Radaelli, A., Solda’ P.L. et al. Autonomic Control of Skin Microvessels Assessment by Power Spectrum of Photoplethysmographic Waves, Clin. Sci., 1996, vol. 90, p. 345.PubMedGoogle Scholar
  5. 5.
    Whittam, A.M., Claytont, R.H., Lord, S.W., et al., Heart Rate and Blood Pressure Variability in Normal Subjects Compared with Data from Beat-to-Beat Models Developed from de Boer’s Model of the Cardiovascular System, Physiol. Meas, 2000, vol. 21, no. 2, p. 305.PubMedCrossRefGoogle Scholar
  6. 6.
    Wray, D.W., Fadel, P.J., Keller, D.M., et al., Dynamic Carotid Baroreflex Control of the Peripheral Circulation during Exercise in Humans, J. Physiol., 2004, vol. 559, no. 2, p. 675.PubMedCrossRefGoogle Scholar
  7. 7.
    Kotani, K., Struzik, Z.R., Takamasu, K., et al., Model for Complex Heart Rate Dynamics in Health and Disease, Phys. Rev. E, 2005, vol. 72, p. 041904.CrossRefGoogle Scholar
  8. 8.
    Ursino, M. and Magosso, E., Short-Term Autonomic Control of Cardiovascular Function: a Mini Review with the Help of Mathematical Models, J. Integr. Neurosci., 2003, vol. 2, no. 2, p. 219.PubMedCrossRefGoogle Scholar
  9. 9.
    Ringwood, J.V. and Malpas, S.C., Slow Oscillations in Blood Pressure via a Nonlinear Feedback Model, Am. J. Physiol. Reg Integr. Comp. Physiol., 2001, vol. 280, p. 1105.Google Scholar
  10. 10.
    Karavaev, A.S., Ponomarenko, V.I., Prokhorov, M.D., et al., Reconstruction Technique of the Model of Sympathetic Baroreflex Regulation of the Blood pressure from the Experimental Time Series, Tekhnol. Zhiv. Sist., 2007, vol. 4, no. 4, p. 34.Google Scholar
  11. 11.
    Karavaev, A.S., Prokhorov, M.D., Ponomarenko, V.I., et al., Synchronization of Low-Frequency Oscillations in the Human Cardiovascular System, Chaos, 2009, vol. 19, p. 033112.PubMedCrossRefGoogle Scholar
  12. 12.
    Kiselev, A.R., Gridnev, V.I., Karavaev, A.S., et al., The Dynamics of 0.1 Hz Oscillations Synchronization in Cardiovascular System during the Treatment of Acute Myocardial Infarction Patients, Appl. Med. Inform., 2011, vol. 28, no. 1, p. 1.Google Scholar
  13. 13.
    Kiselev, A.R., Gridnev, V.I., Karavaev, A.S., et al., The Five-Year Risk of Fatal Outcome and Cardiovascular Events in Patients with Acute Myocardial Infarction on the Basis of 0.1-Hz Rhythm Synchronization in the Cardiovascular System, Saratov Nauch.-Med. Zh., 2010, vol. 6, no. 2, p. 328.Google Scholar
  14. 14.
    Anschutz, S. and Schubert, R., Modulation of the Myogenic Response by Neurogenic Influences in Rat Small Arteries, Br. J. Pharmacol., 2005, vol. 146, no. 2, p. 226.PubMedCrossRefGoogle Scholar
  15. 15.
    Söderström, T., Stefanovska, A., Veber, M., and Svensson, H., Involvement of Sympathetic Nerve Activity in Skin Blood Flow Oscillations in Humans, Am. J. Physiol. Heart Circ. Physiol., 2003, vol. 284, p. 1638.Google Scholar
  16. 16.
    Bernjak, A., Clarkson, P.B.M., McClintock, P.V.E., and Stefanovska, A., Low-Frequency Blood Flow Oscillations in Congestive Heart Failure and After β1-Blockade Treatment, Microvasc. Res., 2008, vol. 76, nos. 3–2, p. 224.PubMedCrossRefGoogle Scholar
  17. 17.
    Schmiedel, O., Nurmikko, T.J., Schroeter, M.L., et al., Alpha Adrenoceptor Agonist-Induced Microcirculatory Oscillations Are Reduced in Diabetic Neuropathy, Microvasc. Res., 2008, vol. 76, no. 2, p. 124.PubMedCrossRefGoogle Scholar
  18. 18.
    Reinhard, M., Wehrle-Wieland, E., Grabiak, D., et al., Oscillatory Cerebral Hemodynamics-the Macro- vs. Microvascular Level, J. Neurol. Sci., 2006, vol. 250, nos. 1–2, p. 103.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. R. Kiselev
    • 1
  • V. S. Khorev
    • 2
  • V. I. Gridnev
    • 1
  • M. D. Prokhorov
    • 3
  • A. S. Karavaev
    • 2
  • O. M. Posnenkova
    • 1
  • V. I. Ponomarenko
    • 3
  • B. P. Bezruchko
    • 2
  • V. A. Shvartz
    • 1
  1. 1.Saratov Scientific Research Institute of CardiologySaratovRussia
  2. 2.Chernyshevsky Saratov State UniversitySaratovRussia
  3. 3.Saratov Branch, Kotel’nikov Institute of Radiotechnique and ElectronicsRussian Academy of SciencesSaratovRussia

Personalised recommendations