Human Physiology

, Volume 38, Issue 2, pp 121–128 | Cite as

P300-based brain-computer interface: The effect of the stimulus position in a stimulus train

  • I. P. Ganin
  • S. L. Shishkin
  • A. G. Kochetova
  • A. Ya. Kaplan


The most popular type of brain-computer interfaces (BCIs) are based on the detection of the P300 wave of the evoked potentials appearing in response to a stimulus chosen by the subject. In order to increase the speed of operation of these BCIs, it is possible to decrease the number of repeated stimulus presentations. It is associated with an increase in the relative importance of the response to the first stimulus in a train for correct recognition of the stimulus chosen. Event-related potentials (ERPs) in response to the first stimulus presentations are known to have their own specificity. Particularly, in many cases, the amplitude of the response to the first presentations is enhanced, which makes it very suitable for recognition in a BCI. However, this effect has not been studied to date. In this study, the ERPs recorded in healthy subjects in a standard BCI paradigm (n = 14) with ten presentations of stimuli or during triple-trial (n = 6) and single-trial (n = 6) presentations of stimuli in a modified BCI paradigm with moving objects have been analyzed. In both cases, first presentations of the target stimuli or single-trial presentation of the target stimulus were associated with higher amplitudes of ERPs. The opportunity to use specific differences between the responses to the first or single-trial presentations and the responses to later stimuli during their repeated presentations for improving high-speed operations in the P300-based BCI is discussed.


brain-computer interface event-related potential P300 wave N1 wave first stimulus single-trial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., et al., Brain-Computer Interfaces for Communication and Control, Clin. Neurophysiol., 2002, vol. 113, p. 767.PubMedCrossRefGoogle Scholar
  2. 2.
    Kaplan, A.Ya., Lim, J.J., Jin, K.S., et al., Unconscious Operant Conditioning in the Paradigm of Brain-Computer Interface Based on Color Perception, Int. J. Neurosci., 2005, vol. 115, p. 781.PubMedCrossRefGoogle Scholar
  3. 3.
    Brunner, P., Bianchi, L., Guger, C., et al., Current Trends in Hardware and Software for Brain-Computer Interfaces (BCIs), J. Neural Eng., 2011, vol. 8, p. 025001.PubMedCrossRefGoogle Scholar
  4. 4.
    Farwell, L.A. and Donchin, E., Talking off the Top of Your Head: Toward a Mental Prosthesis Utilizing Event-Related Brain Potentials, Electroencephalogr. Clin. Neurophysiol., 1988, vol. 70, p. 510.PubMedCrossRefGoogle Scholar
  5. 5.
    Mak, J.N., Arbel, Y., Minett, J.W., et al., Optimizing the P300-Based Brain-Computer Interface: Current Status, Limitations and Future Directions, J. Neural Eng., 2011, vol. 8, p. 025003.PubMedCrossRefGoogle Scholar
  6. 6.
    Krusienski, D.J., Sellers, E.W., McFarland, D.J., et al., Toward Enhanced P300 Speller Performance, J. Neurosci. Methods, 2008, vol. 167, p. 15.PubMedCrossRefGoogle Scholar
  7. 7.
    Shishkin, S.L., Ganin, I.P., Basyul, I.A., and Kaplan, A.Ya., Brain-Computer Interface Baced on a P300 Wave: An N1 Wave and the Problem of Distractors, Materialy XV mezhdunarodnoi konf. po neirokibernetike (Proc. XV Int. Conf. Neurocybernetics), pp. 23–25.Google Scholar
  8. 8.
    Bianchi, L., Sami, S., Hikkerbrand, A., et al., Which Physiological Components Are More Suitable for Visual ERP Based Brain-Computer Interface? A Preliminary MEG/EEG Study, Brain Topogr., 2010, vol. 23, p. 180.PubMedCrossRefGoogle Scholar
  9. 9.
    Treder, M.S. and Blankertz, B., Overt Attention and Visual Speller Design in an ERP-Based Brain-Computer Interface, Behav. Brain Functions, 2010, vol. 6, p. 28.CrossRefGoogle Scholar
  10. 10.
    Konyshev, V.A., Karlovskii, D.V., Mikhailova, E.S., et al., Study of the Letter and Word Recognition by the Brain-Computer Interface with P300 Wave of Human Visual Evoked Potential, Ross. Fiziol. Zh. im. I. M. Sechenova, 2007, vol. 93, p. 141.PubMedGoogle Scholar
  11. 11.
    Sellers, E.W., Vaughan, T.M., and Wolpaw, J.R., A Brain-Computer Interface for Long-Term Independent Home Use, Amyotroph. Lateral Scler., 2010, vol. 11, p. 449.PubMedCrossRefGoogle Scholar
  12. 12.
    McFarland, D.J., Sarnacki, W.A., Townsend, G., et al., The P300-Based Brain-Computer Interface (BCI): Effects of Stimulus Rate, Clin. Neurophysiol., 2011, vol. 122, p. 731.PubMedCrossRefGoogle Scholar
  13. 13.
    Blankertz, B., Lemm, S., Treder, M., et al., Single-Trial Analysis and Classification of ERP Components: A Tutorial, Neuroimage, 2011, vol. 56, p. 814.PubMedCrossRefGoogle Scholar
  14. 14.
    Murphy, T.I. and Segalowitz, S.J., Eliminating the P300 Rebound in Short Oddball Paradigms, Int. J. Psychophysiol., 2004, vol. 53, p. 233.PubMedCrossRefGoogle Scholar
  15. 15.
    Fruhstorfer, H., Soveri, P., and Järvilehto, T., Short-Term Habituation of the Auditory Evoked Response in Man, Electroencephalogr. Clin. Neurophysiol., 1970, vol. 28, p. 153.PubMedCrossRefGoogle Scholar
  16. 16.
    Lew, G.S. and Polich, J., P300, Habituation, and Response Mode, Physiol. Behav., 1993, vol. 53, p. 111.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, A.L., Mouraux, A., Liang, M., and Iannetti, G.D., The Enhancement of the N1 Wave Elicited by Sensory Stimuli Presented at Very Short Inter-Stimulus Intervals Is a General Feature across Sensory Systems, PLoS ONE, 2008, vol. 3, e3929.PubMedCrossRefGoogle Scholar
  18. 18.
    Shishkin, S.L., Ganin, I.P., Basyul, I.A., et al., N1 Wave in the P300 BCI Is not Sensitive to the Physical Characteristics of Stimuli, J. Integr. Neurosci., 2009, vol. 8, p. 471.PubMedCrossRefGoogle Scholar
  19. 19.
    Ganin, I.P., N1 Component of Potentials of the Brain Cortex and Spatial Factors in a P300-Based Brain-Computer Interface, Tezisy dokl. XIV nauchn. shkoly-konf. molodykh uchenykh po fiziologii vysshei nervnoi deyatel’nosti i neirofiziologii (Abstracts XIV Sci. Workshop on the Physiology of Higher Nervous Activity and Neurophysiology), Moscow, 2010, p. 37.Google Scholar
  20. 20.
    Ganin I.P., Shishkin S.L., and Kaplan A.Ya., A P300 BCI with Stimuli Presented on Moving Objects, Proc. Fifth Int. BCI Conf. 2011, 2011, p. 308.Google Scholar
  21. 21.
    McFarland, D.J. and Wolpaw, J.R., Brain-Computer Interface Operation of Robotic and Prosthetic Devices, Computer, 2008, vol. 41, p. 52.CrossRefGoogle Scholar
  22. 22.
    Salvaris, M. and Sepulveda, F., Visual Modifications on the P300 Speller BCI Paradigm, J. Neural Eng., 2009, vol. 6, p. 046011.PubMedCrossRefGoogle Scholar
  23. 23.
    Schalk, G., McFarland, D.J., Hinterberger, T., et al., BCI2000: A General-Purpose Brain-Computer Interface (BCI) System, IEEE Trans. Biomed. Eng., 2004, vol. 51, p. 1034.PubMedCrossRefGoogle Scholar
  24. 24.
    Shishkin, S.L., Ganin, I.P., and Kaplan, A.Ya., Event-Related Potentials in a Moving Matrix Modification of the P300 Brain-Computer Interface Paradigm, Neurosci. Let., 2011, vol. 496, p. 95.CrossRefGoogle Scholar
  25. 25.
    Kaplan, A.Ya. and Shishkin, S.L., RF Patent 2011122085, 2011.Google Scholar
  26. 26.
    Krusienski, D.J., Sellers, E.W., Cabestaing, F., et al., A Comparison of Classification Techniques for the P300 Speller, J. Neural Eng., 2006, vol. 3, p. 299.PubMedCrossRefGoogle Scholar
  27. 27.
    Polich, J., P300 Development from Auditory Stimuli, Psychophysiol., 1986, vol. 23, p. 590.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • I. P. Ganin
    • 1
  • S. L. Shishkin
    • 1
  • A. G. Kochetova
    • 1
  • A. Ya. Kaplan
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations