Advertisement

Human Physiology

, Volume 38, Issue 1, pp 89–93 | Cite as

Association of muscle-specific creatine kinase (CKMM) gene polymorphism with physical performance of athletes

  • O. N. Fedotovskaya
  • D. V. Popov
  • O. L. Vinogradova
  • I. I. Akhmetov
Article

Abstract

The distribution of allele and genotype frequencies of the muscle-specific creatine kinase (CKMM) gene A/G polymorphism in athletes (n = 384) and control subjects (n = 1116) was investigated, and the interrelation between genotypes and aerobic capacity in boat race rowers (n = 85) was revealed. Genotyping was performed using restriction fragment length polymorphism (RFLP) analysis. The aerobic capacity (the maximum oxygen uptake (VO2max) and the maximum power production capacity (W max)) were determined using an incremental test until exhaustion with a rowing ergometer. The CKMM A allele and AA genotype frequencies were significantly higher in endurance athletes (n = 176) than in control subjects (A allele: 78.7% vs. 65.4%; p < 0.0001; AA genotype: 59.7% vs. 44.2%; p = 0.0003). On the other hand, the GG genotype was more prevalent in weightlifters (n = 74) compared to control subjects (31.1% vs. 13.4%; p = 0.0001). Furthermore, the CKMM AA genotype was associated with high values of VO2max (AA, 58.98 (3.44) ml/(kg min); GA, 56.99 (4.36) ml/(kg min); GG, 52.87 (4.32) ml/(kg min); p = 0.0097). Thus, the CKMM gene A/G polymorphism is associated with the physical performance of athletes.

Keywords

CKMM polymorphism physical performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turner, D.C., Wallimann, T., and Eppenberger, H.M., A Protein that Binds Specifically to the M-Line of Skeletal Muscle is Identified as the Muscle Form of Creatine Kinase, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, no. 3, p. 702.PubMedCrossRefGoogle Scholar
  2. 2.
    Wallimann, T. and Eppenberger, H.J., Cell and Muscle Motility, Shay, J.W., Ed., New York: Plenum, 1985.Google Scholar
  3. 3.
    Rossi, A.M., Eppenberger, H.M., Volpe, P., et al., Muscle-Type MM Creatinine Kinase is Specifically Bound to Sarcoplasmic Reticulum and Can Support Ca2+ Uptake and Regulate Local ATP/ADP Ratios, J. Biol. Chem., 1990, vol. 265, p. 5258.PubMedGoogle Scholar
  4. 4.
    Bessman, S.P. and Geiger, P.J., Transport of Energy in Muscle: the Phosphorylcreatine Shuttle, Science, 1981, vol. 211, no. 4481, p. 448.PubMedCrossRefGoogle Scholar
  5. 5.
    Saks, V., Kaambre, T., Guzun, R., et al., The Creatine Kinase Phosphotransfer Network: Thermodynamic and Kinetic Considerations, the Impact of the Mitochondrial Outer Membrane and Modelling Approaches, Subcell. Biochem., 2007, vol. 46, p. 27.PubMedCrossRefGoogle Scholar
  6. 6.
    LaBella, J.J., Daood, M.J., Koretsky, A.P., et al., Absence of Myofibrillar Creatine Kinase and Diaphragm Isometric Function during Repetitive Activation, J. Appl. Physiol., 1998, vol. 84, p. 1166.PubMedGoogle Scholar
  7. 7.
    Steeghs, K.A., Benders, A., Oerlemans, F., et al., Altered Ca2+ Responses in Muscles with Combined Mitochondrial and Cytosolic Creatine Kinase Deficiences, Cell, 1997, vol. 89, p. 93.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Deursen, J., Heerschap, A., Oerlemans, F., et al., Skeletal Muscles of Mice Deficient in Muscle Creatine Kinase Lack Burst Activity, Cell, 1993, vol. 174, p. 621.CrossRefGoogle Scholar
  9. 9.
    Watchko, J.F., Daood, M.J., Sieck, G.C., et al., Combined Myofibrillar and Mitochondrial Creatine Kinase Deficiency Impairs Mouse Diaphragm Isotonic Function, J. Appl. Physiol., 1997, vol. 82, p. 1416.PubMedCrossRefGoogle Scholar
  10. 10.
    Grassi, B., Rossiter, H.B., Hogan, M.C., et al., Faster O2 Uptake Kinetics in Canine Skeletal Muscle in situ after Acute Creatine Kinase Inhibition, J. Physiol., 2011, vol. 589, p. 221.PubMedCrossRefGoogle Scholar
  11. 11.
    Van Deursen, J., Heerschap, A., Oerlemans, F., et al., Skeletal Muscles of Mice Deficient in Muscle Creatine Kinase Lack Burst Activity, Cell, 1993, vol. 74, p. 621.PubMedCrossRefGoogle Scholar
  12. 12.
    Coerwinkel, D.M., Schepens, M.J., Van, P.Z., et al., NcoI RFLP at the Creatine Kinase Muscle Type Gene Locus (CKMM, chromosome 19), Nucleic Acids Res., 1988, vol. 16, p. 8743.CrossRefGoogle Scholar
  13. 13.
    Wilson, I.A., Brindle, K.M., and Fulton, A.M., Differential Localization of the mRNA of the M and B Isoforms of Creatine Kinase in Myoblasts, J. Biochem., 1995, vol. 308, p. 599.Google Scholar
  14. 14.
    Rivera, M.A., Dionne, F.T., Wolfarth, B., et al., Muscle-Specific Creatine Kinase Gene Polymorphisms in Elite Endurance Athletes and Sedentary Controls, Med. Sci. Sports Exerc., 1997, vol. 29, p. 1444.PubMedCrossRefGoogle Scholar
  15. 15.
    Rivera, M.A., Dionne, F.T., Simoneau, J.A., et al., Muscle-Specific Creatine Kinase Gene Polymorphism and VO2max in the Heritage Family Study, Med. Sci. Sports Exerc., 1997, vol. 29, p. 1311.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou, D.O., Hu, Y., Liu, G., et al., An A/G Polymorphism in Muscle-Specific Creatine Kinase Gene in Han Population in Northern China, Yi Chuan, 2005, vol. 27, p. 535.PubMedGoogle Scholar
  17. 17.
    Heled, Y., Bloom, M.S., Wu, T.J., et al., CM-MM and ACE Genotypes and Physiological Prediction of the Creatine Kinase Response to Exercise, J. Appl. Physiol., 2007, vol. 103, p. 504.PubMedCrossRefGoogle Scholar
  18. 18.
    Rivera, M.A., Perusse, L., Simoneau, J.A., et al., Linkage between a Muscle-Specific CK Gene Marker and VO2max in the Heritage Family Study, Med. Sci. Sports Exerc., 1997, vol. 31, p. 698.Google Scholar
  19. 19.
    Brancaccio, P., Limongelli, F.M., and Maffuli, N., Monitoring of Serum Enzymes in Sport, Br. J. Sports Med., 2006, vol. 40, p. 96.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhou, D.O., Hu, Y., Liu, G., et al., Muscle-Specific Creatine Kinase Gene Polymorphism and Running Economy Responses to an 18-Week 5000-m Training Programme, Br. J. Sports Med., 2006, vol. 40, p. 988.PubMedCrossRefGoogle Scholar
  21. 21.
    Echegaray, M. and Rivera, M.A., Role of Creatine Kinase Isoenzymes on Muscular and Cardiorespiratory Endurance: Genetic and Molecular Evidence, Sports Med., 2001, vol. 31, p. 919.PubMedCrossRefGoogle Scholar
  22. 22.
    Lucia, A., Gallego, G.F., Chicharro, J.L., et al., Is there an Association between ACE and CKMM Polymorphisms and Cycling Performance Status during 3-Week Races? Int. J. Sports Med., 2005, vol. 26, p. 442.PubMedCrossRefGoogle Scholar
  23. 23.
    Bolla, M.K., Haddad, L., Humphries, S.E., et al., A Method of Determination of Hundreds of APOE Genotypes Using Highly Simplified, Optimized Protocols and Restriction Digestion Analysis by Microtitre Array Diagonal Gel Electrophoresis (MADGE), Clin. Chem., 1995, vol. 41, p. 1599.PubMedGoogle Scholar
  24. 24.
    Bouchard, C., Daw, E.W., Rice, T., Perusse, L., Gagnon, J., Province, M.A., Leon, A.S., Rao, D.C., Skinner, J.S., and Wilmore, J.H., Familial Resemblance for VO2max in the Sedentary State: the HERITAGE Family Study, Med. Sci. Sports Exerc., 1998, vol. 30, no. 2, p. 252.PubMedCrossRefGoogle Scholar
  25. 25.
    Bouchard, C., Sarzynski, M.A., Rice, T.K., et al., Genomic Predictors of Maximal Oxygen Uptake Response to Standardized Exercise Training Programs, J. Appl. Physiol., 2010.Google Scholar
  26. 26.
    Timmons, J.A., Knudsen, S., Rankinen, T., et al., Using Molecular Classification to Predict Gains in Maximal Aerobic Capacity Following Endurance Exercise Training in Humans, J. Appl. Physiol., 2010, vol. 108, no. 6, p. 1487.PubMedCrossRefGoogle Scholar
  27. 27.
    Ahmetov, I.I., Williams, A.G., Popov, D.V., et al., The Combined Impact of Metabolic Gene Polymorphisms on Elite Endurance Athlete Status and Related Phenotypes, Human Genetics, 2009, vol. 126, no. 6, p. 751.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. N. Fedotovskaya
    • 1
  • D. V. Popov
    • 2
  • O. L. Vinogradova
    • 2
  • I. I. Akhmetov
    • 1
    • 2
    • 3
  1. 1.St. Petersburg Research Institute of Physical CultureSt. PetersburgRussia
  2. 2.Institute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia
  3. 3.Kazan State Medical UniversityKazanRepublic of Tatarstan, Russia

Personalised recommendations