Advertisement

Human Physiology

, 37:500 | Cite as

Central mechanisms of the sleep-wakefulness cycle control

  • V. M. Koval’zon
Reviews

Abstract

The notions on the anatomical, physiological and neurochemical mechanisms of the regulation of wakefulness, slow wave (NREM) sleep and paradoxical (REM) sleep formed by the end of the first decade of the 21st century are briefly reviewed.

Keywords

wakefulness slow wave (NREM) sleep paradoxical (REM) sleep orexin/hypocretin 

References

  1. 1.
    Noirhomme, Q., Laureys, S., and Boly, M., Sleep vs Coma, Front. Neurosci., 2009, vol. 3, no. 3, p. 406.Google Scholar
  2. 2.
    Datta, S. and Lean, R.R., Neurobiologisal Meshanisms for the Regulation of Mammalian Sleep-Wake Behavior: Reinterpretation of historical evidence and inclusion of Contemporary Cellular and Molecular Evidence, Neurossi. Biobehav. Rev., 2007, vol. 31, p. 775.CrossRefGoogle Scholar
  3. 3.
    Koval’zon, V.M., On Sleep Functions, Zh. Evol. Biokhim. Fiziol., 1993, nos. 5–6, p. 627.Google Scholar
  4. 4.
    Datta, S., Cellular and Chemical Neuroscience of Mammalian Sleep, Sleep Med., 2010, vol. 11, p. 431.PubMedCrossRefGoogle Scholar
  5. 5.
    España, R.A. and Scammell, T.E., Sleep Neurobiology for the Clinician, Sleep, 2004, vol. 27, no. 4, p. 811.PubMedGoogle Scholar
  6. 6.
    Jones, B.E., Activity, Modulation and Role of Basal Forebrain Cholinergic Neurons Innervating the Cerebral Cortex, Prog. Brain Res., 2004, vol. 145, p. 157.PubMedCrossRefGoogle Scholar
  7. 7.
    Jones, B.E., Arousal Systems, Front. Biosci, 2003, vol. 8, Suppl., p. S438.CrossRefGoogle Scholar
  8. 8.
    Jones, B.E., Basic Mechanisms of Sleep-Wake States, in Principles and Practice of Sleep Medicine, Kryger, M.H., Roth, T., and Dement, W.C, Eds., Amsterdam: Elsevier, 2005, 4th edition, p. 136.CrossRefGoogle Scholar
  9. 9.
    Jones, B.E., From Waking to Sleeping: Neuronal and Chemical Substrates, Trends Pharmacol. Sci., 2005, vol. 26, no. 11, p. 578.PubMedCrossRefGoogle Scholar
  10. 10.
    Jones, B.E., Modulation of Cortical Activation and Behavioral Arousal by Cholinergic and Orexinergic Systems, Ann. N.Y. Acad. Sci., 2008, vol. 1129, p. 26.PubMedCrossRefGoogle Scholar
  11. 11.
    Steriade, M., Sleep and Neuronal Plasticity: Cellular Mechanisms of Corticothalamic Oscillations, Sleep Circuits and Functions, Luppi, P.-H., Ed., Boca Raton: CRC, 2005, p. 4.Google Scholar
  12. 12.
    Nir, Y. and Tononi, G., Dreaming and the Brain: from Phenomenology to Neurophysiology, Trends Cogn. Sci., 2010, vol. 14, no. 2, p. 88.PubMedCrossRefGoogle Scholar
  13. 13.
    Blanco-Centurion, C., Adenosine and Sleep Homeostasis in the Basal Forebrain, J. Neurosci., 2006, vol. 26, no. 31, p. 8092.PubMedCrossRefGoogle Scholar
  14. 14.
    Basheer, R., Strecker, R.E., Thakkar, M.M., and McCarley, R.W., Adenosine and Sleep-Wake Regulation, Progr. Neurobiol., 2004, vol. 73, p. 379.CrossRefGoogle Scholar
  15. 15.
    Huang, Z.-L., Urade, Y., and Hayaishi, O., Prostaglandins and Adenosine in the Regulation of Sleep and Wakefulness, Curr. Opin. Pharmacol., 2007, vol. 7, p. 33.PubMedCrossRefGoogle Scholar
  16. 16.
    Landolt, H.-P., Sleep Homeostasis: A Role for Adenosine in Humans?, Biochem. Pharmacol., 2008, vol. 75, p. 2070.PubMedCrossRefGoogle Scholar
  17. 17.
    Morairty, S., Rainnie, D., McCarley, R., and Greene, R., Disinhibition of Ventrolateral Preoptic Area Sleep-Active Neurons by Adenosine: a New Mechanism for Sleep Promotion, Neuroscience, 2004, vol. 123, no. 2, p. 451.PubMedCrossRefGoogle Scholar
  18. 18.
    Pigarev, I.N., Neurons of Visual Cortex Respond to Visceral Stimulation During Slow Wave Sleep, Neuroscience, 1994, vol. 62, no. 4, p. 1237.PubMedCrossRefGoogle Scholar
  19. 19.
    Bassetti, C.L, Bischof, M., and Valko, P., Dreaming: A Neurological View, in Psychoanalysis and Neuroscience, Mancia, M., Ed., Milan: Springer, 2006, p. 351.CrossRefGoogle Scholar
  20. 20.
    Fort, P., Bassetti, C.L., and Luppi, P.-H., Alternating Vigilance States: New Insights Regarding Neuronal Networks and Mechanisms, Eur. J. Neurosci., 2009, vol. 29, p. 1741.PubMedCrossRefGoogle Scholar
  21. 21.
    McCarley, R.W., Neurobiology of REM and NREM Sleep, Sleep Med., 2007, vol. 8, p. 302.PubMedCrossRefGoogle Scholar
  22. 22.
    Sakai, K. and Crochet, S., Pontine Structures and Mechanisms Involved in the Generation of Paradoxical (REM) Sleep, Arch. Ital. Biol., 2001, vol. 139, p. 93.PubMedGoogle Scholar
  23. 23.
    Siegel, J.M., REM Sleep, Principles and Practice of Sleep Medicine, Kryger, M.H., Roth, T., and Dement, W.C., Eds., Amsterdam: Elsevier, 2005, 4th edition, p. 120.CrossRefGoogle Scholar
  24. 24.
    Solms, M., Freudian Dreams Today, Front. Neurosci., 2009, vol. 3, no. 3, p. 453.Google Scholar
  25. 25.
    Lu, J., Sherman, D., Devor, M., and Saper, C.B., A Putative Flip-Flop Switch for Control of REM Sleep, Nature, 2006, vol. 441, no. 7093, p. 589.PubMedCrossRefGoogle Scholar
  26. 26.
    Rosenwasser, A.M., Functional Neuroanatomy of Sleep and Circadian Rhythms, Brain Res. Rev., 2009, vol. 61, p. 281.PubMedCrossRefGoogle Scholar
  27. 27.
    Dang-Vu, T.T., Desseilles, M., Petit, D., et al., Neuroimaging in Sleep Medicine, Sleep Med., 2007, vol. 8, p. 349.PubMedCrossRefGoogle Scholar
  28. 28.
    Domhoff, G.W., Foundations for a New Neurocognitive Theory of Dreams, Front. Neurosci., 2009, vol. 3, no. 3, p. 439.Google Scholar
  29. 29.
    Roffwarg, H.R., Participation of REM Sleep in the Development of the Brain: Starting Hypothesis, Unfolding Data, Current Perspective, SRS Bulletin, 2009, vol. 15, no. 2, p. 6.Google Scholar
  30. 30.
    Adamantidis, A. and de Lecea, L., Physiological Arousal: a Role for Hypothalamic Systems, Cell. Mol. Life Sci., 2008, vol. 65, p. 1475.PubMedCrossRefGoogle Scholar
  31. 31.
    Kilduff, T.S. and Peyron, C., The Hypocretin/Orexin Ligand-Receptor System: Implications for Sleep and Sleep Disorders, Trends Neurosci., 2000, vol. 23, no. 8, p. 359.PubMedCrossRefGoogle Scholar
  32. 32.
    Kilduff, T.S., Hypocretin/Hypocretin: Maintenance of Wakefulness and a Multiplicity of Other Roles, Sleep Med. Rev., 2005, vol. 9, p. 227.PubMedCrossRefGoogle Scholar
  33. 33.
    Matsuki, T and Sakurai, T, Orexins and Orexin Receptors: From Molecules to Integrative Physiology, in Orphan G-Protein-Coupled Receptors and Novel Neuropeptides, vol. 46 of Results Probl. Cell Differ., Civelli, O. and Zhou, Q.-Y., Eds., Berlin: Springer, 2008, p. 27.Google Scholar
  34. 34.
    Sakurai, T., Physiological Reviews: Roles of Hypocretin/Hypocretin in Regulation of Sleep/Wakefulness and Energy Homeostasis, Sleep Med. Rev., 2005, vol. 9, p. 231.PubMedCrossRefGoogle Scholar
  35. 35.
    Ferguson, A.V. and Samson, W.J., The Orexin/Hypocretin System: A Critical Regulator of Neuroendocrine and Autonomic Function, Front. Neuroendocrinol., 2003, vol. 24, no. 1, p. 141.PubMedCrossRefGoogle Scholar
  36. 36.
    Scammel, T.E., An Eye-Opening Perspective on Orexin Neurons, Current Biol., 2001, vol. 11, p. 769.CrossRefGoogle Scholar
  37. 37.
    John, J., Cataplexy-Active Neurons in the Hypothalamus: Implications for the Role of Histamine in Sleep and Waking Behavior, Neuron, 2004, vol. 42, no. 5, p. 619.PubMedCrossRefGoogle Scholar
  38. 38.
    Siegel, J.M., Hypocretin (Orexin): Role in Normal Behavior and Neuropathology, Ann. Rev. Psychol., 2004, vol. 55, no. 2, p. 125.CrossRefGoogle Scholar
  39. 39.
    Mignot, E., Perspectives in Narcolepsy and Hypocretin (Orexin) Research, Sleep Med., 2000, vol. I, no. 1, p. 87.CrossRefGoogle Scholar
  40. 40.
    Siegel, J.M., Moore, R., Thannickal, T., and Nienhuiset, R., A Brief History of Hypocretin/Orexin and Narcolepsy, Neuropsychopharmacology, 2001, vol. 25, no. S5, p. 14.CrossRefGoogle Scholar
  41. 41.
    Mignot, E., Narcolepsy As a Model for Brain Autoimmune Diseases, Front. Neurosci., 2009, vol. 3, no. 3, p. 426.Google Scholar
  42. 42.
    Baumann, C.R. and Bassetti, C.L., Hypocretins (Orexins): Clinical Impact of the Discovery of a Neurotransmitter, Sleep Med. Rev, 2005, vol. 9, p. 253.PubMedCrossRefGoogle Scholar
  43. 43.
    Saper, C.B., Scammell, T.E., and Lu, J., Hypothalamic Regulation of Sleep and Circadian Rhythms, Nature, 2005, vol. 437, p. 1257.PubMedCrossRefGoogle Scholar
  44. 44.
    Torterolo, P., Sampogna, S., Morales, F.R., and Chase, M.H., MCH-Containing Neurons in the Hypothalamus of the Cat: Searching for a Role in the Control of Sleep and Wakefulness, Brain Res., 2006, vol. 1119, no. 1, p. 101.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. M. Koval’zon
    • 1
  1. 1.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations