Human Physiology

, 37:217

Cardiovascular effects of the nerve growth factor: An analytical review. Part I: NGF-mediated intracellular signaling pathways

  • S. A. Kryzhanovskii
  • M. B. Vititnova
Reviews
  • 37 Downloads

Abstract

Traditionally, the nerve growth factor (NGF) is considered to be a chemoattractant participating in the regulation of cell proliferation, differentiation, and neuron myelination. However, the currently available data suggest that the physiological role of NGF in the body is much wider. The features of NGF influence on the functional activity of the cardiovascular system, signaling pathways by which activated NGF TrkA and p75ntr receptors regulate the functional state of endothelial and vascular smooth muscle cells and cardiomyocytes are discussed. In addition, the theoretical prospects of agonists and antagonists of TrkA and p75ntr receptors for the treatment of heart and vascular disorders are considered.

Keywords

NGF TrkA p75ntr signal pathways vascular endothelial cells vascular smooth muscle cells cardiomyocytes 

References

  1. 1.
    Sofroniew, M.V., Howe, C.L., and Mobley, W.C., Nerve Growth Factor Signaling, Neuroprotection, Neural Repair., Annu. Rev. Neurosci., 2001, vol. 24, p. 1217.PubMedCrossRefGoogle Scholar
  2. 2.
    Poo, M.M., Neurotrophins As Synaptic Modulators, Nat. Rev. Neurosci., 2001, vol. 2, p. 24.PubMedCrossRefGoogle Scholar
  3. 3.
    Lu, B., Pang, P.T., and Woo, N.H., The Yin and Yang of Neurotrophin Action, Nat. Rev. Neurosci., 2005, vol. 6, p. 603.PubMedCrossRefGoogle Scholar
  4. 4.
    Levi-Montalcini, R. and Hamburger, V., Selective Growth Stimulating Effects of Mouse Sarcoma on the Sensory and Sympathetic Nervous System of the Chick Embryo, J. Exp. Zool., 1951, vol. 116, p. 321.PubMedCrossRefGoogle Scholar
  5. 5.
    Hofer, M.M. and Barde, Y.A., Brain-Derived Neutrophic Factor Prevents Neuronal Death in vivo, Nature, 1988, vol. 331, p. 261.PubMedCrossRefGoogle Scholar
  6. 6.
    Ip, N.Y., Ibanez, C.F., Nye, S.H., et al., Mammalian Neurotrophin-4: Structure, Chromosomal Localization, Tissue Distribution, and Receptor Specificity, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, p. 3060.PubMedCrossRefGoogle Scholar
  7. 7.
    Gotz, R., Koster, R., Winkler, C., et al., Neurotrophin-6 Is a New Member of the Nerve Growth Factor Family, Nature, 1994, vol. 372, p. 266.PubMedCrossRefGoogle Scholar
  8. 8.
    Nisson, A.S., Fainzilbler, M., Falck, P., and Ibanez, C.F., Neurotrophin-7: a Novel Member of the Neutrophin Family from the Zebrafish, FEBS Lett., 1998, vol. 424, p. 285.CrossRefGoogle Scholar
  9. 9.
    Hallbook, F., Ibanez, C.F., and Persson, H., Evolutionary Studies of the Nerve Growth Factor Family Reveal a Novel Member Abundantly Expressed in Xenopus Ovary, Neuron, 1991, vol. 6, p. 845.PubMedCrossRefGoogle Scholar
  10. 10.
    Seidah, N.G., Benjannet, S., Pareek, K., et al., Cellular Processing of the Nerve Growth Factor Precursor by the Mammalian Protein Convertases, Biochem. J., 1996, vol. 314, p. 951.PubMedGoogle Scholar
  11. 11.
    Hasan, W., Jama, A., Donohue, T., et al., Sympathetic Hyperinnervation and Inflammatory Cell NGF Synthesis Following Myocardial Infarction in Rats, Brain Res., 2006, vo1. 124, no. 1, p. 142.CrossRefGoogle Scholar
  12. 12.
    Boutilier, J., Ceni, C., Pagdala, P., et al., Proneurotrophins Require Endocytosis and Intracellular Proteolysis to Induce TrkA Activation, J. Biol. Chem., 2008, vol. 283, no. 19, p. 12709.PubMedCrossRefGoogle Scholar
  13. 13.
    Beattie, M.S., Harrington, A.W., Lee, R., et al., ProNGF Induces P75-Mediated Death of Oligodendrocytes Following Spinal Cord Injury, Neuron, 2002, vol. 36, no. 3, p. 375.PubMedCrossRefGoogle Scholar
  14. 14.
    Harrington, A.W., Leiner, B., Blechschmitt, C., et al., Secreted ProNGF Is a Pathophysiological Death-Inducing Ligand after Adult CNS Injury, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 16, p. 6226.PubMedCrossRefGoogle Scholar
  15. 15.
    Peters, E.M., Hendrix, S., Gölz, G., et al., Nerve Growth Factor and Its Precursor Differentially Regulate Hair Cycle Progression in Mice, J. Histochem. Cytochem., 2006, vol. 54, no. 3, p. 275.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee, R., Kermani, P., Teng, K.K., and Hempstead, B.L., Regulation of Cell Survival by Secreted Proneutrophins, Science, 2001, vol. 294, p.1945.PubMedCrossRefGoogle Scholar
  17. 17.
    Mowla, S.J., Farhadi, H.F., Pareek, S., et al., Biosynthesis and Post-Translation Processing of the Precursor to Brain-Derived Neutrophic Factor, J. Biol. Chem., 2001, vol. 276, p. 12660.PubMedCrossRefGoogle Scholar
  18. 18.
    Bruno, M.A. and Cuello, A.C., Activity-Dependent Release of Precursor Nerve Growth Factor, Conversion to Mature Nerve Growth Factor, and Its Degradation by a Protease Cascade, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, p. 6735.PubMedCrossRefGoogle Scholar
  19. 19.
    Sofroniew, M.V., Howe, C.L., and Mobley, W.C., Nerve Growth Factor Signaling, Neuroprotection, and Neural Repair, Annu. Rev. Neurosci., 2003, vol. 45, p. 1130.Google Scholar
  20. 20.
    Thoenen, H. and Barde, Y.A., Physiology of Nerve Growth Factor, Physiol. Rev., 1980, vol. 60, p. 1284.PubMedGoogle Scholar
  21. 21.
    Grimes, M.L., Zhou, J., Beattie, E.C., et al., Endocytosis of Activated TrkA: Evidence That Nerve Growth Factor Induces Formation of Signaling Endosomes, J. Neurosci., 1996, vol. 16, no. 24, p. 7950.PubMedGoogle Scholar
  22. 22.
    Kim, H., Li, Q., Hempstead, B.L., and Madri, J.A., Paracrine and Autocrine Functions of Brain-Derived Neutrophic Factor (BDNF) and Nerve Growth Factor (NGF) in Brain-Derived Endothelial Cells, J. Biol. Chem., 2004, vol. 279, no. 32, p. 33538.PubMedCrossRefGoogle Scholar
  23. 23.
    Barbacid, M., Lambelle, F., Pulido, D., and Klein, R., The Trk Family of Tyrosine Protein Kinase Receptors, Biochem. Biophys. Acta, 1991, vol. 1072, no. 2–3, p. 115.PubMedGoogle Scholar
  24. 24.
    Martin-Zanca, D., Hughes, S.H., and Barbacid, M., A Human Oncogene Formed by the Infusion of Truncated Tropomyosin and Protein Tyrosine Kinase Sequences, Nature, 1986, vol. 319, no. 6056, p. 743.PubMedCrossRefGoogle Scholar
  25. 25.
    Jing, S., Tapley, P., and Barbacid, M., Nerve Growth Factor Mediates Signal Transduction Through Trk Homodimer Receptors, Neuron, 1992, vol. 9, p. 1067.PubMedCrossRefGoogle Scholar
  26. 26.
    Echardt, A.E., Timpte, C.S., Abernethy, J.L., et al., Porcine Submaxillary Mucin Contains a Cystein-Rich, Carboxyl-Terminal Domain in Addition to a Higly Repetitive, Glycosylated Domain, J. Biol. Chem., 1991, vol. 266, p. 9678.Google Scholar
  27. 27.
    Reichardt, L., Neutrophin-Regulated Signaling Pathways, Phil. Trans. R. Soc. B, 2006, vol. 361, p. 1545.PubMedCrossRefGoogle Scholar
  28. 28.
    Anderson, D., Koch, C.A., Grey, L., et al., Binding of SH2 Domains of Phospholipase C Gamma 1, GAP, and Src to Activated Growth Factor Receptors, Science, 1990, vol. 250, no. 4983, p. 979.PubMedCrossRefGoogle Scholar
  29. 29.
    Ellis, C., Moran, M., McCormick, F., and Pawson, T., Phosphorylation of GAP and GAP-Associated Proteins by Transforming and Mitogenic Tyrosine Kinases, Nature, 1990, vol. 343, no. 6256, p. 377.PubMedCrossRefGoogle Scholar
  30. 30.
    McCormick, F., Ras-Related Proteins in Signal Transduction and Growth Control, Mol. Reprod. Dev., 1995, vol. 42, no. 4, p. 500.PubMedCrossRefGoogle Scholar
  31. 31.
    Cleghon, V. and Morrison, D.K., Raf-1 Interacts with Fyn and Src in Non-Phosphotyrosine-Dependent Manner, J. Biol. Chem., 1994, vol. 269, no. 26, p. 17749.PubMedGoogle Scholar
  32. 32.
    English, J., Pearson, G., Wilsbacher, J., et al., New Insights into the Control of MAP Kinase Pathways, Exp. Cell. Res., 1999, vol. 253, p. 255.PubMedCrossRefGoogle Scholar
  33. 33.
    Scapoli, L., Ramos-Nino, M.E., Martinelli, M.E., and Mossman, B.T., Src-Dependent ERK5 and Src/EGFR-Dependent ERK1/2 Activation Is Required for Cell Proliferation by Asbestos, Oncogen, 2004, vol. 23, p. 805.CrossRefGoogle Scholar
  34. 34.
    Burdon, T., Smith, A., and Savatier, P., Signalling, Cell Cycle and Pluripotence in Embryonic Stem Cells, Trends Cell. Biol., 2002, vol. 12, p. 432.PubMedCrossRefGoogle Scholar
  35. 35.
    Yu, J., Wjasow, C., and Backer, J.M., Regulation of the P85/P110alpha Phosphatidylinositol 3′-Kinase: Distinct Roles for the N-Terminal and C-Terminal SH2 Domains, J. Biol. Chem., 1998, vol. 273, no. 46, p. 30199.PubMedCrossRefGoogle Scholar
  36. 36.
    Rodriguez-Viciana, P., Warne, P.H., Vanhaesebroeck, B., et al., Activation of Phospoinositide 3-Kinase by Interaction with Ras and by Point Mutation, EMBO J., 1996, vol. 15, no. 10, p. 2442.PubMedGoogle Scholar
  37. 37.
    Severin, E.S., Biokhimiya, Moscow: Geotar-Media, 2008, p. 768Google Scholar
  38. 38.
    Brognard, J., Clark, A.S., Ni, Y., and Dennis, P.A., Akt/Protein Kinase B Is Constitutively Active in Non-Small Cell Lung Cancer Cells and Promotes Cellular Survival and Resistance to Chemotherapy and Radiation, Cancer Res., 2001, vol. 61, no. 10, p. 3986.PubMedGoogle Scholar
  39. 39.
    Shears, S.B., Metabolism of the Inositol Phosphates Produced Upon Receptor Activation, Biochem. J., 1989, vol. 260, p. 12309.Google Scholar
  40. 40.
    Bondeva, T., Pirola, L., Bulgarelli-Leva, G., et al., Bifurcation of Lipid and Protein Kinase Signals of PI3Kgamma to the Protein Kinase PKB and MAPK, Science, 1998, vol. 282, no. 5387, p. 293.PubMedCrossRefGoogle Scholar
  41. 41.
    Chung, J., Kubota, H., Ozaki, Y.-I., et al., Timing-Dependent Actions of NGF Required for Cell Differentiation, Plos ONE, 2010, vol. 5, no. 2, p. 1.CrossRefGoogle Scholar
  42. 42.
    Nishimura, T., Ishima, T., Iyo, M., and Hashimoto, K., Potentiation of Nerve Growth Factor-Induced Outgrowth by Fluvoxamine: Role of Sigma-1 Receptors, IP3 Receptors and Cellular Signaling Pathways, PloS One, 2008, vol. 3, no. 7, p. 2558.CrossRefGoogle Scholar
  43. 43.
    Seredenin, S.B. and Voronin, M.V., Neuroreceptory mechanism of afobasol action, Eksp. Klin. Farmakol., 2009, vol. 72, no. 1, p. 3.Google Scholar
  44. 44.
    Ishima, T., Nishimura, T., Lyo, M., and Hashimoto, K., Potentiation of Nerve Growth Facor-Induced Neurite Outgrowth in PC12 Cells by Donepezil: Role of Sigma-1 Receptors and IP3 Receptors, Progr. Neuro-Psychopharmacol. Biol. Psychiatry, 2008, vol. 32, no. 7, p. 1656.CrossRefGoogle Scholar
  45. 45.
    Wu, Z. and Bowen, W., Role of Sigma-1 Receptor C-Terminal Segment in Inositol 1,4,5-Triphosphate Receptor Activation, J. Biol. Chem., 2008, vol. 283, no. 42, p. 28298.CrossRefGoogle Scholar
  46. 46.
    Hayshi, T., Martone, M., Yu, Z., et al., Three-Dimensional Electron Microscopy Reveals New Details of Membrane Systems for Ca2+ Signaling in the Heart, J. Cell. Science, 2009, vol. 122, p. 1005.CrossRefGoogle Scholar
  47. 47.
    Hayshi, T., Justinova, S., Hayashi, E., et al., Regulation of Sigma-1 Receptors and Endoplasmic Reticulum Chaperones in the Brain of Methamphetamine Self-Administering Rats, Phamacol. Exp. Ther., 2010, vol. 323, no. 3, p. 1054.CrossRefGoogle Scholar
  48. 48.
    Mikoshiba, K., The IP3 Receptor/Ca2+ Channel and Its Cellular Function, Biochem. Soc. Symp., 2007, vol. 74, p. 9.PubMedCrossRefGoogle Scholar
  49. 49.
    Diambra, L. and Marchant, J.S., Localization and Socialization: Experimental Insights Into the Functional Architecture of IP3 Receptors, Chaos, 2009, vol. 19, no. 3, p. 037103.PubMedCrossRefGoogle Scholar
  50. 50.
    Futatsugi, A., Nakamura, T., and Yamada, K., IP3 Receptor Types 2 and 3 Mediate Exocrine Secret Ion under Lying Energy Metabolism, Science, 2005, vol. 309, p. 2232.PubMedCrossRefGoogle Scholar
  51. 51.
    Iwasaaki, H., Chiba, K., Uchiyama, T., et al., Molecular Characterization of the Starfish Inositol 1,4,5,-Triphosphate Receptor and Its Role During Oocyte Maturation and Fertilization, J. Biol. Chem., 2007, vol. 282, p. 12755.CrossRefGoogle Scholar
  52. 52.
    Hayashi, T. and Su, T.P., Regulating Ankyrin Dynamics: Roles of Sigma-1 Receptor, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, p. 491.PubMedCrossRefGoogle Scholar
  53. 53.
    Hayashi, T. and Su, T.P., The Potential Role of Sigma-1 Receptors in Lipid Transport and Lipid Raft Reconstitution in the Brain: Implication for Drug Abuse, Life Sci., 2005, vol. 77, p. 1612.PubMedCrossRefGoogle Scholar
  54. 54.
    Hayashi, T., Maurice, T., and Su, T.P., Ca2+ Signaling Via σ1-Receptors: Novel Regulatory Mechanism Affecting Intracellular Ca2+ Concentration, J. Pharmacol. Exp. Ther., 2000, vol. 293, p. 788.PubMedGoogle Scholar
  55. 55.
    Cobos, E.J., Entrena, J.M., Nieto, F.R., et al., Pharmacology and Therapeutic Potential of σ1 Receptor Ligands, Curr. Neuropharmacol., 2008, vol. 6, p. 344.PubMedCrossRefGoogle Scholar
  56. 56.
    Caporali, A. and Emanueli, C., Cardiovascular Actions of Neurotrophins, Physiol. Rev., 2009, vol. 80, p. 279.CrossRefGoogle Scholar
  57. 57.
    Rodriguez-Tebar, A., Dechant, G., and Barde, Y.A., Binding of Brain-Derived Neurotrophic Factor to the Nerve Growth Factor Receptor, Neuron, 1990, vol. 4, p. 487.PubMedCrossRefGoogle Scholar
  58. 58.
    Frade, J.M. and Barde, Y.A., Nerve Growth Factor: Two Receptors, Multiple Functions, Bioessays, 1998, vol. 20, p. 137.PubMedCrossRefGoogle Scholar
  59. 59.
    Nykjaer, A., Lee, R., Teng, K.K., et al., Sortilin Is Essential for ProNGF-Induced Neuronal Cell Death, Nature, 2004, vol. 427, no. 6977, p. 843.PubMedCrossRefGoogle Scholar
  60. 60.
    Andersen, O.S., Boisguerin, P., Glerup, S., et al., Identification of a Linear Epitope in Sortilin That Partakes in Pro-Neurotrophin Binding, J. Biol. Chem., 2010, vol. 285, no. 16, p. 12210.PubMedCrossRefGoogle Scholar
  61. 61.
    Teng, K.K., Felice, S., Kim, T., and Hempstead, B.L., Understanding Proneutrophin Actions: Recent Advances and Challenges, Dev. Neurobiol., 2010, vol. 70, no. 5, p. 350.PubMedGoogle Scholar
  62. 62.
    Hermey, G., The Vps10p-Domain Receptor Family, Cell Mol. Life Sci., 2009, vol. 66, no. 16, p. 2677.PubMedCrossRefGoogle Scholar
  63. 63.
    Xe, X.L. and Garcia, K.C., Structure of Nerve Growth Factor Complexed with the Shared Neutrophin Receptor P75, Science, 2004, vol. 304, p. 870.CrossRefGoogle Scholar
  64. 64.
    Liepinsh, E., Ilag, L.L., Otting, G., and Ibaňez, C.F., NMR Structure of the Death Domain of the p75 Neurotrophin Receptor, EMBO J., 1997, vol. 16, no. 16, p. 4999.PubMedCrossRefGoogle Scholar
  65. 65.
    Meakin, S.O. and Shooter, E.M., The Nerve Growth Factor Family of Receptors, Trends Neurosci., 1992, vol. 15, p. 323.PubMedCrossRefGoogle Scholar
  66. 66.
    Holm, L. and Sander, C., Protein Structure Comparison by Aligment of Distances, J. Mol. Biol., 1993, vol. 233, p. 123.PubMedCrossRefGoogle Scholar
  67. 67.
    Coulson, E., Reid, K., Baca, M., et al., Chopper, a New Death Domain of the p75 Neutrophi Receptor That Mediates Rapid Neuronal Cell Death, J. Biol. Chem., 2000, vol. 275, no. 39, p. 30537.PubMedCrossRefGoogle Scholar
  68. 68.
    Coulson, E.J., Reid, K., Shipham, K.M., et al., The Role of Neurotransmission and the Chopper Domain in p75 Neurotrophin Receptor Death Signaling, Prog. Brain Res., 2004, vol. 146, p. 41.PubMedCrossRefGoogle Scholar
  69. 69.
    Yan, H. and Chao, M.V., Disruption of Cysteine-Rich Repeats of the p75 Nerve Growth Factor Receptor Leads to Loss of Ligand Binding, J. Biol. Chem., 1991, vol. 266, no. 18, p. 12099.PubMedGoogle Scholar
  70. 70.
    Rabizadeh, S., Ye, X., Sperandio, S., et al., Neurotrophin Dependence Domain: a Domain Required for the Mediation of Apoptosis by the p75 Neurotrophin Receptor, J. Mol. Neurosci., 2000, vol. 15, p. 215.PubMedCrossRefGoogle Scholar
  71. 71.
    Wang, J.J., Rabizadeh, S., Tasinato, A., et al., Dimerization-Dependent Block of the Proapoptic Effect of p75(NTR), J. Neurosci. Res., 2000, vol. 60, p. 587.PubMedCrossRefGoogle Scholar
  72. 72.
    Dempsey, P.W., Toillon, R.A., Adriaenssens, E., et al., The Signaling Adaptors and Pathways Activated by TNF Superfamily, Cytokine Growth Factor Rev., 2003, vol. 14, p. 193.PubMedCrossRefGoogle Scholar
  73. 73.
    Vilar, M., Murillo-Carretero, M., Mira, H., et al., Bex1, a Novel Interactor of the p75 Neurotrophin Receptor, Links Neurotrophin Signaling to the Cell Cycle, 2006, vol. 25, p. 1219.Google Scholar
  74. 74.
    Wilkinson, M.G. and Millar, J.B.A., SAPKs and Transcription Factors Do the Nucleocytoplasmic Tango, Gene Dev., 1998, vol. 12, p. 1391.PubMedCrossRefGoogle Scholar
  75. 75.
    Bogoyevitch, M.A. and Kobe, B., Uses for JNK: the Many and Varied Substrates of the c-Jun N-Terminal Kinases, Microbiol. Mol. Biology Rev., 2006, vol. 70, p. 1061.CrossRefGoogle Scholar
  76. 76.
    Autret, A., Martin-Latil, S., Mousson, L., et al., Poliovirus Induces Bax-Dependent Cell Death Mediated by c-Jun NH2-Terminal Kinase, J. Virol., 2007, vol. 81, no. 14, p. 7504.PubMedCrossRefGoogle Scholar
  77. 77.
    Fan, M., Goodwin, M., Vu, T., et al., Vinblastine-Induced Phosphorylation of Bcl-2 and Bcl-XL Is Mediated by JNK and Occurs in Parallel with Inactivation of the Raf-1/MEK/ERK Cascade, J. Biol. Chem., 2000, vol. 275, no. 39, p. 29980.PubMedCrossRefGoogle Scholar
  78. 78.
    Lei, K. and Davis, R.J., JNK Phosphorylation of Bim-Related Members of the Bcl2 Family Induces Bax-Dependent Apoptosis, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no. 5, p. 2432.PubMedCrossRefGoogle Scholar
  79. 79.
    Dobrowsky, R.T., Werner, M.H., Castellino, A.M., et al., Activation of the Sphingomyelin Cycle Through the Low-Affinity Neurotrophin Receptor, Science, 1994, vol. 265, p. 1596.PubMedCrossRefGoogle Scholar
  80. 80.
    Song, M.S., Posse De Chaves, E.I. Inhibition of Rat Sympathetic Neuron Apoptosis by Ceramide. Role of p75NTR in Ceramide Generation, Neuropharmacology, 2003, vol. 45, p. 1130.PubMedCrossRefGoogle Scholar
  81. 81.
    Arana, L., Gangoiti, P., Ouro, A., et al., Ceramide and Ceramide 1-Phosphate in Health and Disease, Lipids Health Dis., 2010, vol. 9, p. 15.PubMedCrossRefGoogle Scholar
  82. 82.
    Davaille, J., Li, L., Mallat, A., and Lotersztajn, S., Sphingosine 1-Phosphate Triggers Both Apoptotic and Survival Signals for Human Hepatic Myofibroblasts, J. Biol. Chem., 2002, vol. 277, no. 40, p. 37323.PubMedCrossRefGoogle Scholar
  83. 83.
    Jarvis, W.D., Fornari, F.A., Traylor, R.S., et al., Induction of Apoptosis and Potentiation of Ceramide-Mediated Cytotoxicity by Sphingoid Bases in Human Myeloid Leukemia Cells, J. Biol. Chem., 1996, vol. 271, no. 14, p. 8275.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang, Y., Yao, B., Delikat, S., et al., Kinase Suppressor of Ras Is Ceramide-Activated Protein Kinase, Cell, 1997, vol. 89, no. 1, p. 63.PubMedCrossRefGoogle Scholar
  85. 85.
    Qiao, L., Yacoub, A., Studer, E., et al., Inhibition of the MAPK and PI3K Pathways Enhances UDCA-Induced Apoptosis in Primary Rodent Hepatocytes, Hepatology, 2002, vol. 35, no. 4, p. 779.PubMedCrossRefGoogle Scholar
  86. 86.
    Kim, H.J., Oh, J.E., Kim, S.W., et al., Ceramide Induces p38 MAPK-Dependent Apoptosis and Bax Translocation Via Inhibition of Akt in HL-60 Cells, Cancer Lett., 2008, vol. 260, nos. 1–2, p. 88.PubMedCrossRefGoogle Scholar
  87. 87.
    Giussani, P., Brioschi, L., Bassi, R., et al., Phosphatidylinositol 3-Kinase/AKT Pathway Regulates the Endoplasmic Reticulum to Golgi Traffic of Ceramide in Glioma Cells: a Link between Lipid Signaling Pathways Involved in the Control of Cell Survival, J. Biol. Chem., 2009, vol. 284, no. 8, p. 5088.PubMedCrossRefGoogle Scholar
  88. 88.
    Cuvillier, O., Edsall, L., and Spiegel, S., Involvement of Sphingosine in Mitochondria-Dependent Fas-Induced Apoptosis of Type II Jurkat T Cells, J. Biol. Chem., 2000, vol. 275, no. 21, p. 15691.PubMedCrossRefGoogle Scholar
  89. 89.
    Kirschnek, S., Paris, F., Weller, M., et al., CD95-Mediated Apoptosis in Vivo Involves Acid Sphingomielinase, J. Biol. Chem., 2000, vol. 275, p. 27316.PubMedGoogle Scholar
  90. 90.
    Grassme, H., Jekle, A., Riehle, A., et al., CD95 Signaling Via Ceramide-Rich Membranes Rafts., J. Biol. Chem., 2001, vol. 276, p. 20589.PubMedCrossRefGoogle Scholar
  91. 91.
    Bierl, M.A. and Isaacson, L.G., Increased NGF Proforms in Aged Sympathetic Neurons and Their Targets, Neurobiol. Aging, 2007, vol. 28, no. 1, p. 122.PubMedCrossRefGoogle Scholar
  92. 92.
    Bierl, M.A. and Isaacson, L.G., “Mature” Nerve Growth Factor Is a Minor Species in Most Peripheral Tissues, Neurosci. Lett., 2005, vol. 380, p. 133.PubMedCrossRefGoogle Scholar
  93. 93.
    Kilic, M., Shäfer, R., Hoppe, J., and Kagerhuber, U., Formation of Noncanonical High Molecular Weight Caspase-3 and -6 Complexes and Activation of Caspase-12 during Serum Starvation Induced Apoptosis in AKR-2B Mouse Fibroblasts, Cell. Death Differ., 2002, vol. 9, no. 2, p. 125.PubMedCrossRefGoogle Scholar
  94. 94.
    Kurinna, S.M., Tsao, C.C., Nica, A.F., et al., Ceramide Promotes Apoptosis in Lung Cancer-Derived A549 Cells by a Mechanism Involving c-Jun NH2-Terminal Kinase, Cancer Res., 2004, vol. 64, no. 21, p. 7852.PubMedCrossRefGoogle Scholar
  95. 95.
    Nica, A.F., Tsao, O.C., Watt, J.C., et al., Ceramide Promotes Apoptosis in Chronic Myelogenous Leukemia-Derived K562 Cells by a Mechanism Involving Caspase-8 and JNK, Cell. Cycle, 2008, vol. 7, no. 21, p. 3362.PubMedCrossRefGoogle Scholar
  96. 96.
    Sánchez, A.M., Malggari-Cazenave, S., Olea, N., et al., Apoptosis Induced by Capsaicin in Prostate PC-3 Cells Involves Ceramide Accumulation, Neutral Sphingomyelinase, and JNK Activation, Apoptosis, 2007, vol. 12, no. 11, p. 2013.PubMedCrossRefGoogle Scholar
  97. 97.
    Widau, R.C., Jin, Y., Dixon, S.A., et al., Protein Phosphatase 2A (PP2A) Holoenzymes Regulat Death-Associated Protein Kinase (DAPK) in Ceramide-Induced Anoikis, J. Biol. Chem., 2010, vol. 285, no. 18, p. 13827.PubMedCrossRefGoogle Scholar
  98. 98.
    Darios, F., Lambeng, N., Troadec, J.D., et al., Ceramide Increases Mitochondrial Free Calcium Levels Via Caspase 8 and Bid: Role in Initiation of Cell Death, J. Neurochem., 2003, vol. 84, no. 4, p. 643.PubMedCrossRefGoogle Scholar
  99. 99.
    Ganesan, V., Perera, M.N., Colombini, D., et al., Ceramide and Activated Bax Act Synergistically to Permeabilize the Mitochondrial Outer Membrane, Apoptosis, 2010, vol. 15, no. 5, p. 553.PubMedCrossRefGoogle Scholar
  100. 100.
    Deng, X., Yin, X., Allan, R., et al., Ceramide Biogenesis Is Required for Radiation-Induced Apoptosis in the Germ Line of C. ellegans, Science, 2008, vol. 322, no. 5898, p. 110.PubMedCrossRefGoogle Scholar
  101. 101.
    Miňano, A., Caballero-Benítez, A., Lluch, M., et al., C2-Ceramide Mediates Cereberallar Granule Cells Apoptosis by Activation of Caspases-2, -9, and -3, J. Neurosci. Res., 2008, vol. 68, no. 8, p. 1743.Google Scholar
  102. 102.
    Mancinetti, A., Di Bartolomeo, S., and Spinedi, A., Long-Chain Ceramide Produced in Response to N-Hexanoylsphingosine Does Not Induce Apoptosis in CHP-100 Cells, Lipids, 2009, vol. 44, no. 11, p. 1039.PubMedCrossRefGoogle Scholar
  103. 103.
    Pirger, Z., Ra-cz, B., and Kiss, T., Dopamine-Induced Programmed Cell Death Is Associated with Cytochrome C Release and Caspase-3 Activation in Snail Salivary Gland Cells, Biol. Cell, 2009, vol. 101, no. 2, p. 105.PubMedCrossRefGoogle Scholar
  104. 104.
    Kimura, M.T., Irie, S., Shoji-Hoshino, S., et al., 14-3-3 Is Involved in p75 Neurotrophin Receptor-Medited Signal Transduction, J. Biol. Chem., 2001, vol. 276, no. 20, p. 17291.PubMedCrossRefGoogle Scholar
  105. 105.
    Mukai, J., Suvant, P., and Sato, T.A., Nerve Growth Factor-Dependent Regulation of NADE-Induced Apoptosis, Vitam. Horm., 2003, vol. 66, p. 385.PubMedCrossRefGoogle Scholar
  106. 106.
    Kim, K.W., Kim, B.J., Chung, C.W., et al., Caspase Cleavage Product Lacking Amino-Terminus of Ikappa-Balpha Sensitizes Resistant Cells to TNF-Alpha and TRAIL-Induced Apoptosis, J. Cell. Biochem., 2002, vol. 85, no. 2, p. 334.PubMedCrossRefGoogle Scholar
  107. 107.
    Marissen, W.E. and Lloyd, R.E., Eukaryotic Translation Initiation Factor 4G Is Targeted for Proteolytic Cleavage by Caspase 3 during Inhibition of Translation in Apoptotic Cells, Mol. Cell. Biol., 1998, vol. 18, no. 12, p. 7565.PubMedGoogle Scholar
  108. 108.
    Hempstead, B.L., Martin-Zanca, D., Kaplan, D.R., et al., High-Affinity NGF Binding Requires Coexpression of the Trk Proto-Oncogene and the Low-Affinity NGF Receptor, Nature, 1991, vol. 350, p. 678.PubMedCrossRefGoogle Scholar
  109. 109.
    Bamji, S.X., Majdan, M., Pozniak, C.D., et al., The p75 Neurotrophin Receptor Mediates Neuronal Apoptosis and Is Essential for Naturally Occurring Sympathetic Neuron Death, J. Cell. Biol., 1998, vol. 140, p. 911.PubMedCrossRefGoogle Scholar
  110. 110.
    Yoon, S.O., Cassacia-Bonnefil, P., Carter, B., et al., Competitive Signaling between TrkA and p75 Nerve Growth Factor Receptors Determines Cell Survival, J. Neurosci., 1998, vol. 18, p. 3273.PubMedGoogle Scholar
  111. 111.
    Kim, A.H., Sasaki, T., and Chao, M.V., JNK-Interacting Protein 1 Promotes Akt1 Activation, J. Biol. Chem., 2003, vol. 278, p. 29830.PubMedCrossRefGoogle Scholar
  112. 112.
    Plo, I., Bono, F., Bezombes, C., et al., Nerve Growth Factor-Induced Protein Kinase C Stimulation Contributes to TrkA-Dependent Inhibition of p75 Neurotrophin Receptor Sphingolipid Signaling, J. Neurosci. Res., 2004, vol. 77, no. 4, p. 465.PubMedCrossRefGoogle Scholar
  113. 113.
    Toman, R.E., Payne, S.G., Watterson, K.R., et al., Differential Transactivation of Sphingosine-1-Phosphate Receptors Modulates NGF-Induced Neurite Extension, JCB, 2004, vol. 166, no. 3, p. 381.CrossRefPubMedGoogle Scholar
  114. 114.
    Green, L.A. and Kaplan, D.R., Early Events in Neurotrophin Signaling Via Trk and p75 Receptor, Curr. Opin. Neurobiol., 1995, vol. 5, no. 5, p. 579.CrossRefGoogle Scholar
  115. 115.
    Edsall, L.C., Pirianov, G.G., and Spiegel, S., Involvement of Sphingosine 1-Phosphate in Nerve Growth Factor-Mediated Neuronal Survival and Differentiation, J. Neurosci., 1977, vol. 17, no. 18, p. 6952.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. A. Kryzhanovskii
    • 1
  • M. B. Vititnova
    • 1
  1. 1.Zakusov Institute of PharmacologyRussian Academy of SciencesMoscowRussia

Personalised recommendations