Human Physiology

, Volume 32, Issue 5, pp 565–573 | Cite as

Influence of external periodic stimuli on heart rate variability in healthy subjects and in coronary heart disease patients

  • V. I. Gridnev
  • A. R. Kiselev
  • E. V. Kotel’nikova
  • O. M. Posnenkova
  • P. Ya. Dovgalevskii
  • V. F. Kirichuk


Frequency estimates of the heart rate variability (HRV) spectrum influenced by external periodic stimuli were studied in healthy subjects and patients with coronary heart disease (CHD). Sensory stimulation by periodic eye opening at a rate of 15, 10, 8, 6, or 5 times per minute, as well as spontaneous and controlled breathing at a rate of 15, 10, 8, 6, or 5 times per minute, was used. It was found that the spectral response to external periodic oscillations was determined by a frequency-dependent phenomenon, the maximal amplitude of heart rate variations being observed in the case of external stimuli at a frequency of 0.1 Hz. A resonance frequency in the 0.1-Hz range may be suggested to exist in the cardiovascular controls. Significant differences in the HRV frequency characteristics between CHD patients and healthy subjects were shown. CHD patients had a characteristic decline in HRV responses to external oscillations; the power of these responses did not depend on the frequency of external stimuli.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glass, L. and Mackey, M.C., From Clocks to Chaos: The Rhythms of Life, Princeton: Princeton Univ. Press, 1988.Google Scholar
  2. 2.
    Goldberger, A.L., Is the Normal Heart Beat Chaotic or Homeostatic?, News Physiol. Sci., 1991, vol. 6, p. 87.PubMedGoogle Scholar
  3. 3.
    Persson, P.B., Modulation of Cardiovascular Control Mechanisms and Their Interaction, Physiol. Rev., 1996, vol. 76, p. 193.PubMedGoogle Scholar
  4. 4.
    Akselrod, S., Gordon, D., Madwed, J.B., et al., Hemodynamic Regulation: Investigation by Spectral Analysis, Am. J. Physiol. (Heart Circ. Physiol.), 1985, vol. 256, p. 132.Google Scholar
  5. 5.
    Malliani, A., Pagani, M., Lombardi, F., and Cerutti, S., Cardiovascular Neural Regulation Explored in the Frequency Domain, Circulation, 1991, vol. 84, p. 482.PubMedGoogle Scholar
  6. 6.
    Pomeranz, B., Macaulay, R.J.B., Caudill, M.A., et al., Assessment of Autonomic Function in Humans by Heart Rate Spectral Analysis, Am. J. Physiol. (Heart Circ. Physiol.), 1985, vol. 248, p. 151.Google Scholar
  7. 7.
    Saul, J.P., Beat-to Beat Variations of Heart Rate Reflect Modulation of Cardiac Autonomic Outflow, News Physiol. Sci., 1990, vol. 5, p. 32.Google Scholar
  8. 8.
    Task Force f the European Society of Cardiology and the Northern American Society of Pacing and Electrophysiology: Heart Rate Variability: Standard measurements, Physiological Interpretation, and Clinical Use, Circulation, 1996, vol. 93, p. 1043.Google Scholar
  9. 9.
    Bernardi, L., Keller, F., Sanders, M., et al., Respiratory Sinus Arrhythmia in Denervated Human Heart, J. Appl. Physiol., 1989, vol. 67, p. 1447.PubMedGoogle Scholar
  10. 10.
    Perlini, S., Giangregoriof, F., Coco, M., et al., Autonomic and Ventilatory Components of Heart Rate and Blood Pressure Variability in Freely Behaving Rats, Am. J. Physiol. (Heart Circ. Physiol.), 1995, vol. 269, p. 1729.Google Scholar
  11. 11.
    Shusterman, V., Aysin, B., Gottipaty, V., et al., Autonomic Nervous System Activity and the Spontaneous Initiation of Ventricular Tachycardia, J. Am. Coll. Cardiol., 1998, vol. 32, p. 1891.PubMedCrossRefGoogle Scholar
  12. 12.
    Borst, C. and Karemaker, J.M., Time Delays in the Human Baroreceptor Reflex, J. Auton. Nerv. Syst., 1983, vol. 9, p. 399.PubMedCrossRefGoogle Scholar
  13. 13.
    Wagner, C.D., Mrowka, R., Nafz, B., and Persson, P.B., Complexity and “Chaos” in Blood Pressure after Baroreceptor Denervation of Conscious Dogs, Am. J. Physiol. (Heart Circ. Physiol.), 1995, vol. 269, p. 1760.Google Scholar
  14. 14.
    Dampney, R.A.L., Functional Organization of Central Pathways Regulating the Cardiovascular System, Physiol. Rev., 1994, vol. 74, p. 323.PubMedGoogle Scholar
  15. 15.
    Eckberg, D.L., Nonlinearities of the Human Carotid Baroreceptor Cardiac Reflex, Circ. Res., 1980, vol. 47, p. 208.PubMedGoogle Scholar
  16. 16.
    Seidel, H. and Herzel, H., Bifurcations in a Nonlinear Model of the Baroreceptor-Cardiac Reflex, Physica. D., 1998, vol. 15, p. 145.CrossRefGoogle Scholar
  17. 17.
    Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge Univ. Press, 2001.Google Scholar
  18. 18.
    Hoyer, D., Pompe, B., Herzel, H., and Zwiener, U., Nonlinear Coordination of Cardiovascular Autonomic Control, IEEE Eng. Med. Biol., 1998, vol. 17, p. 17.CrossRefGoogle Scholar
  19. 19.
    Chon, K.H., Kanters, J.K., Cohen, R.J., and Holstein-Rathlou, N.-H., Detection of Chaotic Determinism in Time Series from Randomly Forced Maps, Physica. D., 1997, vol. 99, p. 471.PubMedCrossRefGoogle Scholar
  20. 20.
    Kitney, R., Linkens, D., Selman, A., and McDonald, A., The Interaction between Heart Rate and Respiration: Part 2. Nonlinear Analysis Based on Computer Modeling, Automedica, 1982, vol. 4, p. 141.Google Scholar
  21. 21.
    Selman, A., McDonald, A., Kitney, R., and Linkers, D., The Interaction between Heart Rate and Respiration: part 1: Experimental Studies in Man, Automedica, 1982, vol. 4, p. 131.Google Scholar
  22. 22.
    Madwed, J.B., Albrecht, P., Mark, R.G., Cohen, R.J., Low-Frequency Oscillations in Arterial Pressure and Heart Rate; A Simple Computer Model, Am. J. Physiol. (Heart Circ. Physiol.), 1989, vol. 256, p. 1573.Google Scholar
  23. 23.
    Sleight, P., La Rovere, M.T., Mortara, A., et al., Physiology and Pathophysiology of Heart Rate Variability in Human: Is Power Spectral Analysis Largely an Index of Baroreflex Gain?, Clin. Sci., 1995, vol. 88, p. 103.PubMedGoogle Scholar
  24. 24.
    Bertram, D., Barres, C., Cuisinaud, G., and Mien, C., The Arterial Baroreflex of the Rat Exhibits Positive Feedback Properties at the Frequency of Mayer Waves, J. Physiol. Lond., 1998, vol. 513, p. 251.PubMedCrossRefGoogle Scholar
  25. 25.
    Stauss, H.M., Anderson, E.A., Haynes, W.G., and Kregel, K.C., Frequency Response Characteristics of Sympathetically Mediated Vasomotor Waves in Humans, Am. J. Physiol. (Heart Circ. Physiol.), 1998, vol. 274, p. 1277.Google Scholar
  26. 26.
    Pitzalis, M.V., Mastropasquan, F., Massari, F., et al., Effects of Respiratory Rate on the Relationships between R-R Interval and Systolic Blood Pressure Fluctuations: A Frequency-Dependent Phenomenon, Cardiovasc. Res., 1998, vol. 38, p. 332.PubMedCrossRefGoogle Scholar
  27. 27.
    Brown, R.B., Beightol, L.A., Koh, J., and Eckberg, D.L., Important Influence of Respiration on Human R-R Interval Power Spectra is Largely Ignored, J. Appl. Physiol., 1993, vol. 75, p. 2310.PubMedGoogle Scholar
  28. 28.
    Kiselev, A.R. and Kolizhirina, O.M., A New Approach to the Study of Intrinsic Characteristics of Autonomic Heart Control, Saratov Nauchn.-Med. Vestn., 2002, vol. 1, no. 1, p. 45.Google Scholar
  29. 29.
    Giddens, D.P., and Kitney, R.I., Neonatal Heart Rate Variability and Its Relation to Respiration, J. Theor. Biol., 1985, vol. 13, p. 759.CrossRefGoogle Scholar
  30. 30.
    Kolizhirina, O.M. and Kiselev, A.R., The Low-Frequency Component of the Heart Rate Variability Spectrum Is an Ambiguous Characteristic of Sympathetic Activity, Saratov Nauchn.-Med. Vestn., 2002, vol. 1, no. 1, p. 44.Google Scholar
  31. 31.
    Talor, J.A., Carr, D.L., Myers, C.W., and Eckberg, D.L., Mechanisms Underlying Very-Low Frequency R-R Interval Oscillations in Humans, Circulation, 1998, vol. 98, p. 547.Google Scholar
  32. 32.
    Polanczyk, C.A., Rohde, L.E.P., Moraes, R.S., et al., Sympathetic Nervous System Representation in Time and Frequency Domain Indices of Heart Rate Variability, Eur. J. Appl. Physiol., 1998, vol. 79, p. 69.CrossRefGoogle Scholar
  33. 33.
    Hojgaard, M.V., Holstein-Rathlou, N.H., Agner, E., and Kanters, J.K., Dynamics of Spectral Components of Heart Rate Variability during Changes in Autonomic Balance, Am. J. Physiol. (Heart Circ. Physiol.), 1998, vol. 275, p. 213.Google Scholar
  34. 34.
    Houle, M.S. and Billman, G.E., Low-Frequency Component of Heart Rate Variability Spectrum: A Poor Marker of Sympathetic Activity, Am. J. Physiol. (Heart Circ. Physiol.), 1999, vol. 276, p. 215.Google Scholar
  35. 35.
    Lazzeri, C., LaVilla, G., Mannelli, M., et al., Effects of Acute Clonidine Administration on Power Spectral Analysis of Heart Rate Variability in Healthy Humans, J. Auton. Pharmacol., 1998, vol. 18, p. 307.PubMedCrossRefGoogle Scholar
  36. 36.
    Sanderson, J.F., Yeung, L.Y., Yung, D.T., et al., Impact of Changes in Respiratory Frequency and Posture on Power Spectral Analysis of Heart Rate and Systolic Blood Pressure Variability in Normal Subjects and Patients with Heart Failure, Clin. Sci. (Lond.), 1996, vol. 91, p. 35.Google Scholar
  37. 37.
    Davies, L.C., Colhoun, H., Coats, A.J., et al., A Noninvasive Measure of Baroreflex Sensitivity without Blood Pressure Measurement, Am. Heart J., 2002, vol. 143, p. 441.PubMedCrossRefGoogle Scholar
  38. 38.
    Bernardi, L., Gabutti, A., Porta, C., and Spicuzza, L., Slow Breathing Reduces Chemoreflex Response to Hypoxia and Hypercapnia and Increases Baroreflex Sensitivity, J. Hypertens., 2001, vol. 19, p. 2221.PubMedCrossRefGoogle Scholar
  39. 39.
    Mangin, L., Monti, A., Medigue, C., et al., Altered Baroreflex Gain during Voluntary Breathing in Chronic Heart Failure, Eur. J. Heart Failure, 2001, vol. 3, p. 189.CrossRefGoogle Scholar
  40. 40.
    Eckberg, D.L., Temporal Response Patterns of the Human Sinus Node to Brief Carotid Baroreceptor Stimuli, J. Physiol. Lond., 1976, vol. 258, p. 769.PubMedGoogle Scholar
  41. 41.
    Borst, C. and Karemaker, J.M., Time Delays in the Human Baroreceptor Reflex, J. Auton. Nerv. Syst., 1983, vol. 9, p. 399.PubMedCrossRefGoogle Scholar
  42. 42.
    Dzimiri, N., Regulation of Beta-Adrenoreceptor Signaling in Cardiac Function and Disease, Pharmacol. Rev., 1999, vol. 51, p. 465.PubMedGoogle Scholar
  43. 43.
    Armour, J.A., Myocardial Ischemia and the Cardiac Nervous System, Cardiovasc. Res., 1999, vol. 41, p. 41.PubMedCrossRefGoogle Scholar
  44. 44.
    Kruger, C., Kalenka, A., Haunstetter, A., et al., Baroreflex Sensitivity and Heart Rate Variability in Conscious Rats with Myocardial Infarction, Am. J. Physiol. (Heart Circ. Physiol.), 1997, vol. 273, p. 2240.Google Scholar
  45. 45.
    Pumprla, J., Howorka, K., Groves, D., et al., Functional Assessment of Heart Rate Variability: Physiological Basis and Practical Applications, Int. J. Cardiol., 2002, vol. 84, p. 1.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. I. Gridnev
    • 1
  • A. R. Kiselev
    • 1
  • E. V. Kotel’nikova
    • 1
  • O. M. Posnenkova
    • 1
  • P. Ya. Dovgalevskii
    • 1
  • V. F. Kirichuk
    • 2
  1. 1.Saratov Research Institute of CardiologyMinistry of Health of the Russian FederationSaratovRussia
  2. 2.Saratov State Medical UniversitySaratovRussia

Personalised recommendations