Advertisement

Programming and Computer Software

, Volume 45, Issue 8, pp 458–466 | Cite as

Building the Software-Defined Data Center

  • B. M. ShabanovEmail author
  • O. I. SamovarovEmail author
Article
  • 22 Downloads

Abstract

Data center is the most effective way of providing computational resources to a large number of users. The software-defined model is a modern approach to the creation of the computing infrastructure for the data center, which allows user tasks to be processed in acceptable time and at acceptable cost. This paper formulates the general design requirements for the interagency data center and describes some problems and methods of planning and building software-defined data centers (deployment of computing systems optimized for maximum hardware utilization, software support for different classes of tasks, etc.).

Notes

REFERENCES

  1. 1.
    Hellerstein, J.M., Programming a parallel future, Technical report no. UCB/EECS-2008-144, EECS Department, University of California, Berkeley, 2008.Google Scholar
  2. 2.
    Asanović, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., and Yelick, K.A., The landscape of parallel computing research: A view from Berkeley, Technical report no. UCB/EECS-2006-183, EECS Department, University of California, Berkeley, 2006.Google Scholar
  3. 3.
    Perks, M., Reference architecture: VMware software defined data center. https://lenovopress.com/lp0661-reference-architecture-vmware-software-defined-data-center-thinkagile-vx. Accessed August 15, 2018.Google Scholar
  4. 4.
    Fujitsu, Software-defined data center: Infrastructure for enterprise digital transformation. https://sp.ts.fujitsu.com/dmsp/Publications/public/wp-sddc-infrastructure-for-enterprise-digital-transformation-ww-en.pdf.Google Scholar
  5. 5.
    EMC Reference Architecture, Federation software-defined data center. http://www.emc.com/collateral/ TechnicalDocument/h13378-evp-sddc-ra.pdf.Google Scholar
  6. 6.
    Gaisaryan, S., Samovarov, O., Avetisyan, A., and Ivannikov, V., University cluster: integration of education, science, and industry, Otkrytye Sist. SUBD, 2010, no. 5.Google Scholar
  7. 7.
    Avetisyan, A., Samovarov, O., Gaisaryan, S., and Khashba, E., OpenCirrus: Russian segment, Otkrytye Sist. SUBD, 2011, no. 5.Google Scholar
  8. 8.
    Samovarov, O., Kraposhin, M., and Strizhak, S., Web laboratory UniHUB in the framework of the program “University cluster,” Proc. Workshop Multiphysical Modelling in OpenFOAM, Riga, 2011.Google Scholar
  9. 9.
    Samovarov, O. and Strizhak, S., Features of the implementation of the web laboratory of continuum mechanics on the basis of the technological platform of the program “University cluster,” Trudy mezhdunarodnoi superkomp’yuternoi konferentsii s elementami nauchnoi shkoly dlya molodezhi “Nauchnyi servis v seti Internet: ekzaflopsnoe budushchee” (Proc. Int. Supercomputer Conference with Elements of Scientific School for Young People “Scientific Service on the Internet: An Exaflop Future”), Izd. Mosk. Gos. Univ., 2011.Google Scholar
  10. 10.
    Kraposhin, M.V., Samovarov, O.I., and Strizhak, S.V., Experience of using free software for computing industrial-scale spatial hydrodynamics, Tr. konf. Svobodnoe programmnoe obespechenie (Proc. Conf. Free Software), Izd. S.-Peterb. Gos. Politekh. Univ., 2010.Google Scholar
  11. 11.
    Tchernykh, A., Miranda-López, V., Babenko, M., Armenta-Cano, F., Radchenko, G., Drozdov, A.Y., and Avetisyan, A., Performance evaluation of secret sharing schemes with data recovery in secured and reliable heterogeneous multi-cloud storage, Cluster Comput. (in press).  https://doi.org/10.1007/s10586-018-02896-9 CrossRefGoogle Scholar
  12. 12.
    Turchaninov, V.Y., Kosenkov, S.O., Samovarov, O.I., Tchij, O.P., Korovin, I.S., and Schaefer, G., High-performance cloud computing for managing the life cycle of oil and gas fields, Adv. Intell. Syst. Comput., 2019, pp. 1093–1098.  https://doi.org/10.1007/978-981-10-8944-2_127 Google Scholar
  13. 13.
    Tchernykh, A., Babenko, M., Chervyakov, N., Miranda-López, V., Kuchukov, V., Cortés-Mendoza, J.M., Deryabin, M., Kucherov, N., Radchenko, G., and Avetisyan, A., AC-RRNS: Anti-collusion secured data sharing scheme for cloud storage, Int. J. Approximate Reasoning, 2018, pp. 60–73.  https://doi.org/10.1016/j.ijar.2018.07.010 zbMATHGoogle Scholar
  14. 14.
    Feoktistov, A., Sidorov, I., Tchernykh, A., Edelev, A., Zorkalzev, V., Kostromin, R., Gorsky, S., Bychkov, I., and Avetisyan, A., Multi-agent approach for dynamic elasticity of virtual machines provisioning in heterogeneous distributed computing environment, Proc. Int. Conf. High Performance Computing and Simulation (HPCS), 2018.  https://doi.org/10.1109/HPCS.2018.00145
  15. 15.
    Borisenko, O.D. and Lazarev, N.A., Implementing JSON operations for inmemory data grid as pass-through cache layer to RDBMS, Int. J. Civ. Eng. Technol., 2018, vol. 9, no. 10, pp. 1033–1040.Google Scholar
  16. 16.
    Tchernykh, A., Babenko, M., Miranda-Lopez, V., Drozdov, A.Y., and Avetisyan, A., WA-RRNS: Reliable data storage system based on multi-cloud, Proc. 32nd IEEE Int. Parallel and Distributed Processing Symp. Workshops (IPDPSW), 2018.  https://doi.org/10.1109/IPDPSW.2018.00107
  17. 17.
    Massobrio, R., Nesmachnow, S., Tchernykh, A., Avetisyan, A., and Radchenko, G., Towards a cloud computing paradigm for big data analysis in smart cities, Program. Comput. Software, 2018, vol. 44, no. 3, pp. 181–189.  https://doi.org/10.1134/S0361768818030052 CrossRefGoogle Scholar
  18. 18.
    Lopez-Falcon, E., Tchernykh, A., Chervyakov, N., Babenko, M., Nepretimova, E., Miranda-López, V., Drozdov, A.Y., Radchenko, G., and Avetisyan, A., Adaptive encrypted cloud storage model, Proc. IEEE Conf. Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2018, pp. 329–334.  https://doi.org/10.1109/EIConRus.2018.8317099
  19. 19.
    Tchernykh, A., Babenko, M., Chervyakov, N., Miranda-Lopez, V., Cortes-Mendoza, J.M., Du, Z., Nava-ux, P.O.A., and Avetisyan, A., Analysis of secured distributed cloud data storage based on multilevel RNS, Proc. IEEE Conf. Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 2018, pp. 382–386.  https://doi.org/10.1109/EIConRus.2018.8317112
  20. 20.
    Kalugin, M.D., Korchagova, V.N., Kraposhin, M.V., Marchevsky, I.K., and Moreva, V.S., Using big analytics tools in performance of gas dynamics and acoustics tasks, Herald Bauman Moscow State Tech. Univ. Ser. Nat. Sci., no. 3, pp. 32–47.  https://doi.org/10.18698/1812-3368-2018-3-32-47
  21. 21.
    Canosa, R., Tchernykh, A., Cortés-Mendoza, J.M., Rivera-Rodriguez, R., Rizk, J.L., Avetisyan, A., Du, Z., Radchenko, G., and Morales, E.R.C., Energy consumption and quality of service optimization in containerized cloud computing, Proc. Inst. Syst. Program. Russ. Acad. Sci., 2018, pp. 47–55.  https://doi.org/10.1109/ISPRAS.2018.00014
  22. 22.
    Varnovsky, N.P., Zakharov, V.A., and Shokurov, A.V., On the existence of provably secure cloud computing systems, Moscow Univ. Comput. Math. Cybernet., 2016, vol. 40, no. 2, pp. 83–88.  https://doi.org/10.3103/S0278641916020096 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Varnovskiy, N.P., Martishin, S.A., Khrapchenko, M.V., and Shokurov, A.V., Secure cloud computing based on threshold homomorphic encryption, Program. Comput. Software, 2015, vol. 41, no. 4, pp. 215–218.  https://doi.org/10.1134/S0361768815040088 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Scientific Research Institute of System Development, Russian Academy of SciencesMoscowRussia
  2. 2. Ivannikov Institute for System Programming, Russian Academy of SciencesMoscowRussia
  3. 3.Plekhanov Russian University of EconomicsMoscowRussia

Personalised recommendations