Advertisement

Programming and Computer Software

, Volume 42, Issue 2, pp 77–83 | Cite as

Using two types of computer algebra systems to solve maxwell optics problems

  • D. S. KulyabovEmail author
Article
  • 59 Downloads

Abstract

To synthesize Maxwell optics systems, the mathematical apparatus of tensor and vector analysis is generally employed. This mathematical apparatus implies executing a great number of simple stereotyped operations, which are adequately supported by computer algebra systems. In this paper, we distinguish between two stages of working with a mathematical model: model development and model usage. Each of these stages implies its own computer algebra system. As a model problem, we consider the problem of geometrization of Maxwell’s equations. Two computer algebra systems—Cadabra and FORM—are selected for use at different stages of investigation.

Keywords

Form System Young Diagram Message Passing Interface Computer Algebra System Vector Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hadamard, J.S., Psychology of Invention in the Mathematical Field, Dover, 1954, 2nd ed.zbMATHGoogle Scholar
  2. 2.
    Brooks, F.P.J., No silver bullet-essence and accidents of software engineering, Proc. IFIP Tenth World Computing Conference, 1986, pp. 1069–1076.Google Scholar
  3. 3.
    Penrose, R. and Rindler, W., Spinors and Space-Time: Two-Spinor Calculus and Relativistic Fields, Cambridge: Cambridge Univ. Press, 1987, vol. 1.zbMATHGoogle Scholar
  4. 4.
    Korol’kova, A.V., Kulyabov, D.S., and Sevast’yanov, L.A., Tensor computations in computer algebra systems, Program. Comput. Software, 2013, vol. 39, no. 3. pp. 135–142.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Sevastianov, L.A., Kulyabov, D.S., and Kokotchikova, M.G., An application of computer algebra system Cadabra to scientific problems of physics, Phys. Part. Nucl. Lett., 2009, vol. 6, no. 7. pp. 530–534.CrossRefGoogle Scholar
  6. 6.
    Peeters, K., Cadabra: A field-theory motivated symbolic computer algebra system, Comput. Phys. Commun., 2007, vol. 176, no. 8. pp. 550–558.CrossRefzbMATHGoogle Scholar
  7. 7.
    Peeters, K., Introducing Cadabra: A symbolic computer algebra system for field theory problems. http://arxivorg/abs/hep-th/0701238.Google Scholar
  8. 8.
    Peeters, K., Symbolic field theory with Cadabra, Computeralgebra- Rundbrief, 2007, no. 41, pp. 16–19.zbMATHGoogle Scholar
  9. 9.
    Brewin, L., A brief introduction to Cadabra: A tool for tensor computations in general relativity, Comput. Phys. Commun., 2010, vol. 181, no. 3. pp. 489–498.CrossRefzbMATHGoogle Scholar
  10. 10.
    Tung, M.M., FORM matters: Fast symbolic computation under UNIX, Comput. Math. Appl., 2005, vol. 49, pp. 1127–1137.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Vermaseren, J.A.M., Kuipers, J., Tentyukov, M., et al., FORM version 4.1 Reference Material, 2013.Google Scholar
  12. 12.
    Heck, A.J.P. and Vermaseren, J.A.M., FORM for Pedestrians, Amsterdam, 2000.Google Scholar
  13. 13.
    Fliegner, D., Retey, A., and Vermaseren, J.A.M., Parallelizing the symbolic manipulation program FORM. http://arxivorg/abs/hep-ph/9906426.Google Scholar
  14. 14.
    Tentyukov, M. and Vermaseren, J.A.M., Extension of the functionality of the symbolic program FORM by external software, Comput. Phys. Commun., 2007, vol. 176, no. 6. pp. 385–405.CrossRefGoogle Scholar
  15. 15.
    Boos, E.E. and Dubinin, M.N., Problems of automatic computations for physics on colliders, Usp. Fiz. Nauk, 2010, vol. 180, no. 10. pp. 1081–1094CrossRefGoogle Scholar
  16. 16.
    Bunichev, V., Kryukov, A., and Vologdin, A., Using FORM for symbolic evaluation of Feynman diagrams in CompHEP package, Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, vol. 502, pp. 564–566.CrossRefGoogle Scholar
  17. 17.
    Hahn, T., Generating and calculating one-loop Feynman diagrams with FeynArts, FormCalc, and Loop- Tools. http://arxivorg/abs/hep-ph/9905354.Google Scholar
  18. 18.
    Hahn, T., Automatic loop calculations with FeynArts, FormCalc, and LoopTools. http://arxivorg/abs/hepph/0005029.Google Scholar
  19. 19.
    Hahn, T. and Lang, P., FeynEdit: A tool for drawing Feynman diagrams. http://arxivorg/abs/0711.1345.Google Scholar
  20. 20.
    Wheeler, J.A., Neutrinos, Gravitation, and Geometry, Bologna, 1960.Google Scholar
  21. 21.
    Tamm, I.E., Electrodynamics of an anisotropic medium in the special relativity theory, Zh. Russ. Fiz.- Khim. O-va., Chast Fiz., 1924, vol. 56, nos. 2–3, pp. 248–262.Google Scholar
  22. 22.
    Tamm, I.E., Crystal optics of the relativity theory in connection with the geometry of a biquadratic form, Zh. Russ. Fiz.-Khim. O-va., Chast Fiz., 1925, vol. 57, nos. 3–4, pp. 209–240.Google Scholar
  23. 23.
    Tamm, I.E. and Mandelstam, L.I., Elektrodynamik der anisotropen Medien in der speziellen Relativitatstheorie, Mathematische Annalen, 1925, vol. 95, no. 1. pp. 154–160.MathSciNetzbMATHGoogle Scholar
  24. 24.
    Plebanski, J., Electromagnetic waves in gravitational fields, Phys. Rev., 1960, vol. 118, no. 5. pp. 1396–1408.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Felice, F., On the gravitational field acting as an optical medium, Gen. Relativ. Gravitation, 1971, vol. 2, no. 4. pp. 347–357.CrossRefGoogle Scholar
  26. 26.
    Leonhardt, U., Philbin, T.G., and Haugh, N., General Relativity in Electrical Engineering, 2008, pp. 1–19.Google Scholar
  27. 27.
    Leonhardt, U. and Philbin, T.G., Transformation optics and the geometry of light, Prog. Opt., 2009, vol. 53, pp. 69–152.CrossRefGoogle Scholar
  28. 28.
    Kulyabov, D.S., Korolkova, A.V., and Korolkov, V.I., Maxwell’s equations in arbitrary coordinate system, Bulletin of Peoples’ Friendship University of Russia, Series “Mathematics. Information Sciences. Physics,” 2012, no. 1, pp. 96–106.Google Scholar
  29. 29.
    Kulyabov, D.S., Geometrization of electromagnetic waves, Proc. Int. Conf. Mathematical Modeling and Computational Physics (MMCP), Dubna, 2013, p. 120.Google Scholar
  30. 30.
    Kulyabov, D.S. and Nemchaninova, N.A., Maxwell’s equations in curvilinear coordinates, Bulletin of Peoples’ Friendship University of Russia, Series “Mathematics. Information Sciences. Physics,” 2011, no. 2, pp. 172–179.Google Scholar
  31. 31.
    Minkowski, H., Die grundlagen fur die electromagnetischen vorgange in bewegten korpern, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 1908, no. 68, pp. 53–111.zbMATHGoogle Scholar
  32. 32.
    Stratton, J.A., Electromagnetic Theory, Wiley, 2007.zbMATHGoogle Scholar
  33. 33.
    Fulton W., Young Tableaux: With Applications to Representation Theory and Geometry, Cambridge: Cambridge Univ. Press, 1997.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of Applied Probability and InformaticsPeoples’ Friendship University of RussiaMoscowRussia
  2. 2.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations