Programming and Computer Software

, Volume 41, Issue 6, pp 350–360 | Cite as

Encapsulation of partitioned parallelism into open-source database management systems

  • C. S. Pan
  • M. L. Zymbler


This paper presents an original approach to parallel processing of very large databases by means of encapsulation of partitioned parallelism into open-source database management systems (DBMSs). The architecture and methods for implementing a parallel DBMS through encapsulation of partitioned parallelism into PostgreSQL DBMS are described. Experimental results that confirm the effectiveness of the proposed approach are presented.


Message Passing Interface Computational Node Exchange Operation Execution Plan Query Replication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sokolinsky, L.B., Survey of architectures of parallel database systems, Program. Comput. Software, 2004, vol. 30, no. 6, pp. 337–346.zbMATHCrossRefGoogle Scholar
  2. 2.
    Lepikhov, A.V. and Sokolinsky, L.B., Query processing in a DBMS for cluster systems, Program. Comput. Software, 2010, vol. 36, no. 4, pp. 205–215.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Page, J., A study of a parallel database machine and its performance the NCR/Teradata DBC/1012, Lect. Notes. Comput. Sci., 1992, vol. 618, pp. 115–137.CrossRefGoogle Scholar
  4. 4.
    Waas, F.M., Beyond conventional data warehousing— Massively parallel data processing with greenplum database, Proc. 2nd Int. Workshop on Business Intelligence for the Real-Time Enterprise (BIRTE) in conjunction with VLDB, Auckland, 2008.Google Scholar
  5. 5.
    Baru, C.K., Fecteau, G., Goyal, A., et al., An overview of DB2 parallel edition, Proc. ACM SIGMOD Int. Conf. Management of Data, San Jose, 1995, pp. 460–462.Google Scholar
  6. 6.
    Akal, F., Bohm, K., and Schek, H.-J., OLAP query evaluation in a database cluster: A performance study on intra-query parallelism, Lect. Notes. Comput. Sci., 2002, vol. 2435, pp. 218–231.CrossRefGoogle Scholar
  7. 7.
    Ronström, M. and Oreland, J., Recovery principles in MySQL Cluster 5.1, Proc. 31st Int. Conf. Very Large Data Bases, Trondheim, 2005, pp. 1108–1115.Google Scholar
  8. 8.
    Pruscino, A., Oracle RAC: Architecture and performance, Proc. ACM SIGMOD Int. Conf. Management of Data, San Diego, 2003, p. 635.Google Scholar
  9. 9.
    Paes, M., Lima, A.A.B., Valduriez, P., and Mattoso, M., High-performance query processing of a real-world OLAP database with ParGRES, Lect. Notes. Comput. Sci., 2008, vol. 5336, pp. 188–200.CrossRefGoogle Scholar
  10. 10.
    Ngamsuriyaroj, S. and Pornpattana, R., Performance evaluation of TPC-H queries on MySQL Cluster, Proc. 24th IEEE Int. Conf. Advanced Information Networking and Applications Workshops (WAINA), Perth, 2010, pp. 1035–1040.CrossRefGoogle Scholar
  11. 11.
    Evdoridis, T. and Tzouramanis, T., A generalized comparison of open source and commercial database management systems, in Database Technologies: Concepts, Methodologies, Tools, and Applications, IGI Global, 2009, pp. 294–308.Google Scholar
  12. 12.
    Paulson, L.D., Open source databases move into the marketplace, Computer, 2004, vol. 37, no. 7, pp. 13–15.CrossRefGoogle Scholar
  13. 13.
    Gavrish, E.V., Koltakov, A.V., Medvedev, A.A., and Sokolinsky, L.B., Open-source parallel DBMS for cluster computing systems, Vestn. YuUrGU, Ser. Vychisl. Mat. Informatika, 2013, vol. 2, no. 3, pp. 81–91.Google Scholar
  14. 14.
    Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., et al., HadoopDB: An architectural hybrid of MapReduce and DBMS technologies for analytical workloads, Proc. VLDB Endowment, 2009, vol. 2, no. 1, pp. 922–933.CrossRefGoogle Scholar
  15. 15.
    Dean, J. and Ghemawat, S., MapReduce: Simplified data processing on large clusters, Commun. ACM, 2008, vol. 51, no. 1, pp. 107–113.CrossRefGoogle Scholar
  16. 16.
    White, T., Hadoop: The Definitive Guide, O’Reilly Media, 2009.Google Scholar
  17. 17.
    Sokolinsky, L.B., Organization of parallel query processing in multiprocessor database machines with hierarchical architecture, Program. Comput. Software, 2001, vol. 27, no. 6, pp. 297–308.zbMATHCrossRefGoogle Scholar
  18. 18.
    Stonebraker, M. and Kemnitz, G., The POSTGRES: Next-generation database management system, Commun. ACM, 1991, vol. 34, no. 10, pp. 78–92.CrossRefGoogle Scholar
  19. 19.
    Pan, C.S., Development of a parallel DBMS on the basis of PostgreSQL, Proc. 7th Spring Researchers Colloquium on Databases and Information Systems (SYRCo-DIS), 2011, pp. 57–61.Google Scholar
  20. 20.
    Pan, C.S. and Zymbler, M.L., Taming elephants, or how to embed parallelism into PostgreSQL, Lect. Notes. Comput. Sci., 2013, vol. 8055, pp. 153–164.CrossRefGoogle Scholar
  21. 21.
    Zhou, J., Hash join, Encyclopedia of Database Systems, Liu, L. and Ozsu, M.T., Eds., Springer US, 2009, pp. 1288–1289.Google Scholar
  22. 22.
    Zhou, J., Nested loop join, Encyclopedia of Database Systems, Liu, L. and Özsu, M.T., Eds., Springer US, 2009, p. 1895.Google Scholar
  23. 23.
    Zhou, J., Sort-merge join, Encyclopedia of Database Systems, Liu, L. and Ozsu, M.T., Eds., Springer US, 2009, pp. 2673–2674.Google Scholar
  24. 24.
    Gropp, W., MPI 3 and beyond: Why MPI is successful and what challenges it faces, Lect. Notes. Comput. Sci., 2012, vol. 7490, pp. 1–9.CrossRefGoogle Scholar
  25. 25.
    Moskovskii, A.A., Perminov, M.P., Sokolinsky, L.B., Cherepennikov, V.V., and Shamakina, A.V., Study of performance of the supercomputer family 'SKIF Aurora’ on industrial problems, Vestn. YuUrGU, Ser. Mat. Model. Program., 2010, vol. 211, no. 35, pp. 66–78.Google Scholar
  26. 26.
    Sokolinsky, L.B., Parallel’nye sistemy baz dannykh (Parallel Database Systems), Moscow: Mosk. Gos. Univ., 2013.Google Scholar
  27. 27.
    Nambiar, R.O., Poess, M., Masland, A., et al., TPC benchmark roadmap 2012, Lect. Notes. Comput. Sci., 2013, vol. 7755, pp. 1–20.CrossRefGoogle Scholar
  28. 28.
    Kostenetskii, P.S., Lepikhov, A.V., and Sokolinsky, L.B., Technologies of parallel database systems for hierarchical multiprocessor environments, Autom. Remote Control, 2007, vol. 68, no. 5, pp. 847–859.zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Gubin, M.V. and Sokolinsky, L.B., About communication cost estimation for processing of partitioned relation with uniform distribution, Vestn. YuUrGU, Ser. Vychisl. Mat. Informatika, 2013, vol. 2, no. 1, pp. 33–43.Google Scholar
  30. 30.
    Sokolinsky, L.B., Effective buffer management replacement algorithm for parallel shared-nothing database system, Vychisl. Metody Program., 2002, vol. 3, no. 1, pp. 113–130.Google Scholar
  31. 31.
    Kostenetskii, P.S. and Sokolinsky, L.B., Simulation of hierarchical multiprocessor database systems, Program. Comput. Software, 2013, vol. 39, no. 1, pp. 10–24.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations