Programming and Computer Software

, Volume 34, Issue 5, pp 279–293 | Cite as

Preliminary coarse image registration by using straight lines found on them for constructing super resolution mosaics and 3D scene recovery

Article

Abstract

An algorithm of coarse image registration of a 3D scene taken from different camera perspectives is proposed. The algorithm uses information on geometrical parameters of straight lines found on the images and on distribution of color and/or brightness around these lines. Colors are taken into account by using the fuzzy logic technique. The result of the algorithm operation is a planar projective transformation (planar homography) matching approximately the images. In order to use the technique in algorithms of 3D scene reconstruction, an estimate of size of the window used for searching correspondent points after the coarse image registration is obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartley, R. and Zisserman, A., Multiple View Geometry in Computer Vision, Cambridge University Press, 2004.Google Scholar
  2. 2.
    Capel, D. and Zisserman, A., Computer Vision Applied to Super Resolution, IEEE Signal Processing Magazine, 2003, pp. 75–86, http://www.robots.ox.ac.uk/%7evgg/publications/html/index.html
  3. 3.
    Reddy S.B. and Chatterji, B.N., An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration, IEEE PAMI, 1996, vol. 5, no. 8, pp. 1266–1271.Google Scholar
  4. 4.
    Shi, J. and Tomasi, C., Good Features to Track, IEEE Conf. on Comput. Vision and Pattern Recognition (CVPR’94), Seattle, 1994.Google Scholar
  5. 5.
    Dufournaud, Y., Schmid, C., and Horaud, R., Matching Images with Different Resolutions, Proc. of IEEE Conf. on Comput. Vision and Pattern Recognition (CVPR’00), Hilton Head Island, SC, USA, 2000, vol. 1, pp. 612–618, http://citeseer.ist.psu.edu/dufournaud00matching.html.Google Scholar
  6. 6.
    Birchfield, S. and Tomasi, C., Multiway Cut for Stereo and Motion with Slanted Surfaces, Proc. of the Seventh IEEE Int. Conf. on Comput. Vision, Kerkyra, Greece, 1999, pp. 489–495, http://citeseer.ist.psu.edu/birchfield 99multiway.html.
  7. 7.
    Harris, C.G. and Stephens, M., A Combined Corner and Edge Detector, Proc. of the 4th Alvey Vision Conf., Manchester, 1988, pp. 147–151.Google Scholar
  8. 8.
    Lindeberg, T., Scale-Space Theory in Computer Vision, Dordrecht, The Netherlands: Kluwer, 1994, also http://www.nada.kth.se/%7Etony/earlyvision.html.Google Scholar
  9. 9.
    Schmid, C. and Mohr, R., Local Grayvalue Invariants for Image Retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 1997, vol. 19, no. 5, pp. 530–534, http://citeseer.ist.psu.edu/schmid97local.html.CrossRefGoogle Scholar
  10. 10.
    Florack, L.M.J., Ter Haar Romeny, B.M., Koenderink, J.J., and Viergever, M.A., General Intensity Transformations and Differential Invariants, J. Mathematical Imaging Vision, 1994, vol. 4, no. 2, pp. 171–187, http://www.bmi2.bmt.tue.nl/image-analysis/People/LFlorack/Extensions/Flor94d.pdf.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Fischler, M. and Bolles, R., Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Commun. ACM, 1981, vol. 24, no. 6, pp. 381–395.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Davis, J., Mosaics of Scenes with Moving Objects, Proc. Comput. Vision and Pattern Recognition Conf., 1998, pp. 354–360, http://citeseer.ist.psu.edu/danis98mosaics.html.
  13. 13.
    Kolmogorov, V. and Zabih, R., Computing Visual Correspondence with Occlusions Using Graph Cuts, Int. Conf. on Comput. Vision, Vancouver, 2001, http://www.cs.cornell.edu/rdz/Papers/KZ-ICCV01-tr.pdf.
  14. 14.
    Lin, M.H. and Tomasi, C., Surfaces with Occlusions from Layered Stereo, IEEE Comput. Soc. Conf. on Comput. Vision and Pattern Recognition, 2003.Google Scholar
  15. 15.
    Scharstein, D. and Szeliski, R., A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms, IJCV, 2002, vol. 47, no. 1/2/3, pp. 7–42, http://cat.middlebury.edu/stereo.MATHCrossRefGoogle Scholar
  16. 16.
    Poelman, C.J. and Kanade, T., A Paraperspective Factorization Method for Shape and Motion Recovery, IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997, vol. 19, no. 3, pp. 206–218, http://citeseer.ist.psu.edu/poelman92paraperspective.html.CrossRefGoogle Scholar
  17. 17.
    Salgado, J.P. and Costeira, A., A Multi-Body Factorization Method for Motion Analysis. Tese para Obtencao do Grau de Doutor em Engenharia Electrotecnica e de Computadores, Universitade Technica de Lisboa Instituto Superior Rechnico, Lisboa, 1995, http://omni.isr.ist.utl.pt/~jpc/pubs.html.Google Scholar
  18. 18.
    Sturm, P. and Triggs, B., A Factorization Based Algorithm for Multi-Image Projective Structure and Motion, The 4th European Conf. on Comput. Vision, Cambridge, England, 1996, pp. 709–720.Google Scholar
  19. 19.
    Sveshnikova, N.V. and Yurin, D.V., A Priori and A Posteriori Error Estimates in Recovery of 3D Scenes by Factorization Algorithms, Programmirovanie, 2004, no. 5, pp. 48–68 [Programming Comput. Software (Engl. Transl.), 2004, vol. 30, no. 5, pp. 278–295].Google Scholar
  20. 20.
    Sveshnikova, N.V. and Yurin, D.V., The Factorization Algorithms: Results Reliability and Application for the Epipolar Geometry Recovery, Proc. of the 16th Int. Conf. on Comput. Graphics and Application Graphi-Con′2006, 2006, Novosibirsk Akademgorodok, Russia.Google Scholar
  21. 21.
    Pritchett, P. and Zisserman, A., Wide Baseline Stereo Matching, Proc. of the 6th Int. Conf. on Comput. Vision, Bombay, 1998, pp. 754–760, http://www.robots.ox.ac.uk/%7evgg/publications/html/index.html.
  22. 22.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L, and Stein, C., Introduction to Algorithms, The MIT Press, 2001, 2nd ed.Google Scholar
  23. 23.
    Hartley, R.I., Theory and Practice of Projective Rectification, Int. J. Comput. Vision, 1999, vol. 35, no. 2, pp. 115–127.CrossRefMathSciNetGoogle Scholar
  24. 24.
    Zhang, Z., Determining the Epipolar Geometry and its Uncertainty: A Review, Tech. Report 2927, INRIA, Sophia-Antipolis, France, 1996, http://citeseer.ist.psu.edu/zhang98determining.html.Google Scholar
  25. 25.
    Armangué, X., Pegès, J., and Salvi, J., Comparative Survey on Fundamental Matrix Estimation, http://citeseer.ist.psu.edu/483847.html.
  26. 26.
    Baumberg, A., Reliable Feature Matching across Widely Separated Views, Proc. CVPR, 2000, pp. 774–781, http://citeseer.ist.psu.edu/baumberg00reliable.html.
  27. 27.
    Mikolajczyk, K. and Schmid, C., Scale and Affine Invariant Interest Point Detectors, Int. J. Comput. Vision, 2004, vol. 60, no. 1, pp. 63–86, http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijvc2004.pdf.CrossRefGoogle Scholar
  28. 28.
    Lowe, D.G., Distinctive Image Features from Scale-Invariant Keypoints, Int. J. Comput. Vision, 2004, vol. 69, no. 2, pp. 91–110, http://www.cs.ubc.ca/spider/lowe/pubs.html.CrossRefGoogle Scholar
  29. 29.
    Gouet, V., Montesinos, P., and Pele, D., A Fast Matching Method for Color Uncalibrated Images using Differential Invariants, Proc. of the British Machine Vision Conf., Southampton, 1998, http://citeseer.ist.psu.edu/article/gouet98fast.html.
  30. 30.
    Csurka, G., Zeller, C., Zhang, Z., and Faugeras, O.D., Characterizing the Uncertainty of the Fundamental Matrix, Comput. Vision and Vision Understanding (CVIU), 1997, vol. 68, no. 1, pp. 18–36, http://citeseer.ist.psu.edu/csurka95characterizing.html.CrossRefGoogle Scholar
  31. 31.
    Matas, J., Chum, O., Martin, U., and Pajdla, T., Robust Wide Baseline Stereo from Maximally Stable Extremal Regions, Proc. of the British Machine Vision Conf., London, 2002, vol. 1, pp. 384–393, http://cmp.felk.cvut.cz/~matas.Google Scholar
  32. 32.
    Princen, J.P., Illingworth, J., and Kittler, J.V., A Formal Definition of the Hough Transform: Properties and Relationships, J. Mathematical Imaging Vision, 1992, vol. 1, no. 1, pp. 153–168.CrossRefGoogle Scholar
  33. 33.
    Kiryat, N., Eldar, Y., and Bruckstein, A.M., A Probabilistic Hough Transform, Pattern Recognition, 1991, vol. 24, pp. 303–316.CrossRefMathSciNetGoogle Scholar
  34. 34.
    Xu. L., Oja, E., and Kultanen, P., A New Curve Detection Method: Randomized Hough Transform (RHT), Pattern Recognition Letters, 1990, vol. 11, no. 5, pp. 331–338.MATHCrossRefGoogle Scholar
  35. 35.
    Kalvianen, H. and Hirvonen, P., Connective Randomized Hough Transform (CRHT), Proc. of the 9th Scandinavian Conf. on Image Analysis, Uppsala, Sweden, 1995, vol. 2, pp. 1029–1036.Google Scholar
  36. 36.
    Toft, P.A., The Random Transform: Theory and Implementation, PhD Thesis, Technical University of Denmark, 1996.Google Scholar
  37. 37.
    Cheyne, Gaw Ho, Young, R.C.D., Bradfield, C.D., and Chatwin, C.R., A Fast Hough Transform for the Parameterization of Straight Lines Using Fourier Methods, Real-Time Imaging, 2000, vol. 6, no. 2, pp. 113–127.CrossRefGoogle Scholar
  38. 38.
    Volegov, D.B., Gusev, V.V., and Yurin, D.V., Straight Line Detection on Images via Hartley Transform. Fast Hough Transform, Proc. of the 16-th Int. Conf. on Comput. Graphics and Application GraphiCon’2006, 2006, Novosibirsk, Akademgorodok, Russia.Google Scholar
  39. 39.
    Donoho, D.L. and Huo, X., Beamlets and Multiscale Image Analysis, http://www.stat.stanford.edu/donoho/Reports/.http://citeseer.ist.psu.edu/donoho01beamlets.html.
  40. 40.
    Donoho, D. and Huo, X., Applications of Beamlets to Detection and Extraction of Lines, Curves and Objects in Very Noisy Images, http://citeseer.ist.psu.edu/446366.html.
  41. 41.
    Bracewell, R.N., The Hartley Transform, Oxford University Press, 1986.Google Scholar
  42. 42.
    Press, et al., Numerical Recipes in C, Cambridge University Press, 1992.Google Scholar
  43. 43.
    Theußl, T., Tobler, R.F., and Gröller, E., The Multi-Dimensional Hartley Transform as a Basis for Volume Rendering, WSCG 2000 Conf. Proc., http://citeseer.ist.psu.edu/450842.html, http://wscg.zcu.cz/wscg2000/Papers_2000/W11.pdf.gz.
  44. 44.
    Zhang, Z., A Flexible New Technique for Camera Calibration, IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, vol. 22, no. 11, pp. 1330–1334.CrossRefGoogle Scholar
  45. 45.
    Di Zenzo, S., A Note on the Gradient of Multi-image, Comput. Vision Graphics Image Process, 1986, vol. 33, pp. 116–125.CrossRefGoogle Scholar
  46. 46.
    Klir, G. and Bo Yuan, Fuzzy Sets and Fuzzy Logic, 1995.Google Scholar
  47. 47.
    Zimmermann, H., Fuzzy Set Theory and Its Applications, 2001.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Department of General and Applied PhysicsMoscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  2. 2.Department of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations