Programming and Computer Software

, Volume 34, Issue 5, pp 267–270 | Cite as

A diffusion method for image filtering and sharpening



Noise Volume Initial Image Anisotropic Diffusion Cubature Formula Object Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borisenko, G.V., Denisov, A.M., and Krylov, A.S., A Diffusion Filtering Method for Image Processing, Programmirovanie, 2004, vol. 30, no. 5, pp. 43–47 [Program. Comp. Soft. (Engl. Transl.), 2004, vol. 30, no. 5, pp. 273–277].MathSciNetGoogle Scholar
  2. 2.
    Weickert, J., Applications of Nonlinear Diffusion in Image Processing and Computer Vision, Acta Math. Univ. Comenianae, 2001, vol. 120, no. 1, pp. 33–50.MathSciNetGoogle Scholar
  3. 3.
    Gilboa, G., Zeevi, Y.Y., and Sochen, N.A., Image Enhancement and Denoising by Complex Diffusion Processes, IEEE Trans. Pattern Analys. Mach. Intell., 2004, vol. 26, no. 8, pp. 1020–1036.CrossRefGoogle Scholar
  4. 4.
    Alvarez, L., Lions, P.-L., and Morel, J., Image Selective Smoothing and Edge Detection by Nonlinear Diffusion, SIAM J. Numer. Analys., 1992, vol. 29, no. 3, pp. 845–866.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Weeratunga, S.K. and Kamath, C., PDE-Based Non-Linear Diffusion Techniques for Denoising Scientific and Industrial Images: An Empirical Study, Lawrence Livermore National Laboratory, Technical Report, 2001.Google Scholar
  6. 6.
    Weeratunga, S.K., and Kamath, C., A Comparison of PDE-Based Non-Linear Anisotropic Diffusion Techniques for Image Denoising, Lawrence Livermore National Laboratory Technical Report, 2002.Google Scholar
  7. 7.
    Lysaker, M., Lundervold, A., and Tai, X., Noise Removal Using Fourth-Order Partial Differential Equation with Applications to Medical Magnetic Resonance Images in Space and Time, IEEE Trans. Image Process., 2003, vol. 12, no. 12, pp. 1579–1590.CrossRefGoogle Scholar
  8. 8.
    Alvarez, L., Guichard, F., Lions, P.-L., and Morel, J.-M., Axioms and Fundamental Equations in Image Processing, Arch. Rational Mech. Anal., 1993, vol. 123, pp. 199–257.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Perona, P. and Malik, J., Scale Space and Edge Detection Using Anisotropic Diffusion, IEEE Trans. Pattern Analys. Mach. Intell., 1990, vol. 12, no. 7, pp. 629–639.CrossRefGoogle Scholar
  10. 10.
    Weickert, J., A Review of Nonlinear Diffusion Filtering, Lect. Notes Comput. Sci., 1997, vol. 1252, pp. 3–28.Google Scholar
  11. 11.
    Weickert, J. and Benhamouda, B., A Semidiscrete Nonlinear Scale-Space Theory and Its Relation to the Perona-Malik Paradox, Adv. Comput. Vision, 1997, pp. 1–10.Google Scholar
  12. 12.
    Weickert, J., Haar Romeny, B.M., and Viergever, M.A., Efficient and Reliable Schemes for Nonlinear Diffusion Filtering, IEEE Trans. Image Process., 1998, vol. 7, no. 3, pp. 398–410.CrossRefGoogle Scholar
  13. 13.
    Lattes, R. and Lions, J.-L., The Method of Quasi-Reversibility; Applications to Partial Differential Equations, New York: Elsevier, 1969.Google Scholar
  14. 14.
    Bakhvalov, N.S., On Approximate Calculation of Multiple Integrals, Vestn. Mosk. Univ., Ser. Mat. Fiz. Astron., 1959, no. 4.Google Scholar
  15. 15.
    Samarskii, A.A. and Gulin, A.V., Chislennye metody matematicheskoi fiziki (Numerical Methods of Mathematical Physics), Moscow: Nauchnyi Mir, 2000.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • G. V. Borisenko
    • 1
  • A. M. Denisov
    • 1
  • A. S. Krylov
    • 1
  1. 1.Department of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations