Programming and Computer Software

, Volume 34, Issue 2, pp 95–100

Indefinite summation of rational functions with additional minimization of the summable part

Article

Abstract

An algorithm of indefinite summation of rational functions is proposed. For a given function f(x), it constructs a pair of rational functions g(x) and r(x) such that f(x) = g(x + 1) − g(x) + r(x), where the degree of the denominator of r(x) is minimal, and, when this condition is satisfied, the degree of the denominator of g(x) is also minimal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gosper, R.W., Decision Procedures of Indefinite Hypergeometric Summation, Proc. Natl. Acad. Sci. USA, 1978, vol. 75, pp. 40–42.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abramov, S.A., The Rational Component of the Solution of a First-Order Linear Recurrence Relation with a Rational Right-Hand Side, Zh. Vychisl. Mat. Mat. Fiz., 1975, vol. 15, pp. 1035–1039.MATHMathSciNetGoogle Scholar
  3. 3.
    Paule, P., Greatest Factorial Factorization and Symbolic Summation, J. Symbol. Comput., 1995, vol. 20, no. 3, pp. 235–268.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Pirastu, R., Algorithms for Indefinite Summation of Rational Functions in Maple, The Maple Tech. Newsletter, 1995, vol. 2, no. 1, pp. 1–12.Google Scholar
  5. 5.
    Pirastu, R. and Strehl, V., Rational Summation and Gosper-Petkovšek Representation, J. Symbolic Comput., 1995, vol. 20, pp. 617–635.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Abramov, S.A., Indefinite Sums of Rational Functions, Proc. ISSAC’95, Montreal: ACM, 1995, pp. 303–308.Google Scholar
  7. 7.
    Pirastu, R., A Note On the Minimality Problem in Indefinite Summation of Rational Functions, Actes du Se’minaire Lotharingien de Combinatoire, 31e session, 1994, Saint-Nabor: Publications de l’I.R.M.A, 1994/021, pp. 95–101.Google Scholar
  8. 8.
    Polyakov, S.P., Symbolic Additive Decomposition of Rational Functions, Programmirovanie, 2005, vol. 31, no. 2, pp. 15–21 [Programming Comput. Software (Engl. Transl.), 2005, vol. 31, no. 2, pp. 60–64].MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations