Programming and Computer Software

, Volume 33, Issue 3, pp 147–153 | Cite as

On selection of nonmultiplicative prolongations in computation of Janet bases

  • V. P. Gerdt
  • Yu. A. Blinkov


We consider three modifications of our basic involutive algorithm for computing polynomial Janet bases. These modifications, which are related to degree-compatible monomial orders, yield specific selection strategies for nonmultiplicative prolongations. Using a standard database of benchmarks designed for testing programs computing Gröbner bases, we compare these algorithmic modifications (in terms of their efficiency) with Faugére’s F4 algorithm, which is built in the Magma computer algebra system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gerdt, V. P. and Blinkov, Yu. A., Involutive Bases of Polynomial Ideals, Math. Comput. Simulation, 1998, vol. 45, pp. 519–542,; Minimal Involutive Bases, Math. Comput. Simulation, 1998, vol. 45, pp. 543–560, Scholar
  2. 2.
    Gerdt, V. P. and Blinkov, Yu. A., Involutive Division of Monomials, Programmirovanie, 1998, vol. 24, no. 6, pp. 283–285.MATHMathSciNetGoogle Scholar
  3. 3.
    Janet, M., Leçons sur les systémes d’equations aux dérivées partielles, Cahiers Scientifiques, IV, Paris: Gauthier-Villars, 1929.Google Scholar
  4. 4.
    Gerdt, V. P., Blinkov, Yu. A., and Yanovich, D. A., Construction of Janet Bases. I. Monomial Bases, Proc. of the 4th Int. Conf. Computer Algebra in Scientific Computing CASC-2001 (Konstanz, Germany, 2001), Ganzha, V. G., Mayr, E. W., and Vorozhtsov, E. V., Eds., Berlin: Springer, 2001, pp. 233–247; II. Polynomial Bases, pp. 249–263.Google Scholar
  5. 5.
    Gerdt, V. P., Involutive Algorithms for Computing Gröbner Bases, Computational Commutative and Non-Commutative Algebraic Geometry, Cojocaru, S., Pfister, G., and Ufnarovski, V., Eds., NATO Science Series, IOS, 2005, vol. 196, pp. 199–225;
  6. 6.
    Gerdt, V. P. and Blinkov, Yu. A., Janet-Like Monomial Division. Janet-Like Gröbner Bases, Lecture Notes in Computer Science (Proc. of the 8th Int. Conf. Computer Algebra in Scientific Computing CASC-2005), Berlin: Springer, 2005, pp. 174–195.Google Scholar
  7. 7.
  8. 8.
  9. 9.
    Buchberger, B., Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, in Recent Trends in Multidimensional System Theory, Bose, N.K., Ed., Dordrecht: Reidel, 1985, pp. 184–232.Google Scholar
  10. 10.
    Giovinni, A., Mora, T., Niesi, G., Robbiano, L., and Traverso, C., One Sugar Cube, Please, or Selection Strategies in the Buchberger Algorithm, Proc. of ISSAC’91, New York: ACM, 1991, pp. 49–54.Google Scholar
  11. 11.
    Gerdt, V. P. and Blinkov, Yu. A., On Computing Janet Bases for Degree-Compatible Orderings, Proc. of 10th Rhine Workshop on Computer Algebra (Basel, Switzerland, 2006), Basel, 2006, pp. 107–117,
  12. 12.
    Faugère, J. C., Gianni, P., Lazard, D., and Mora, T., Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering, J. Symbolic Computation, 1993, vol. 16, pp. 329–344.MATHCrossRefGoogle Scholar
  13. 13.
    Collart, S., Kalkbrener, M., and Mall, D., Converting Bases with the Gröbner Walk, J. Symbolic Computation, 1997, vol. 24, pp. 465–469.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
  15. 15.
    Faugère, J. C., A New Efficient Algorithm for Computing Gröbner Bases (F 4), J. Pure Applied Algebra, 1999, vol. 139, nos. 1–3, pp. 61–68.MATHCrossRefGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
    Bigatti, A. M., La Scala, R., and Robbiano, L., Computing Toric Ideals, J. Symbolic Computation, 1999, vol. 27, pp. 351–365.MATHCrossRefGoogle Scholar
  19. 19.
    Conti, P. and Traverso, C., Buchberger Algorithm and Integer Programming, Lecture Notes in Computer Science (Proc. AAECC-9), Berlin: Springer, 1991, vol. 539, pp. 130–139.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. P. Gerdt
    • 1
  • Yu. A. Blinkov
    • 2
  1. 1.Laboratory of Information TechnologiesJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Department of Mathematics and MechanicsSaratov State UniversitySaratovRussia

Personalised recommendations