Programming and Computer Software

, Volume 33, Issue 3, pp 139–146 | Cite as

Involutive divisions and monomial orderings

  • A. S. Semenov
  • P. A. Zyuzikov
Article

Abstract

In the paper, two classes of involutive divisions related to admissible monomial orderings—≻-divisions and ≺-divisions—are considered. The latter may be viewed as an improvement of the class of induced divisions introduced in [1]. The continuity and constructivity of the ≺-divisions, as well as a number of additional properties of the ≻-divisions, are proved. Taking into account that the Janet division is a ≻-division associated with the lexicographical order, its “antipode”—a ≺-division associated with the same order—is separated in the class of the ≺-divisions.

References

  1. 1.
    Gerdt, V. P., Involutive Division Technique: Some Generalizations and Optimizations, J. Math. Sci., 2002, vol. 108, no. 6, pp. 1034–1051.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Apel, J., The Theory of Involutive Divisions and an Application to Hilbert Function Computations, J. Symbolic Computation, 1998, vol. 25, no. 6, pp. 683–704.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gerdt, V. P. and Blinkov, Yu. A., Involutive Bases of Polynomial Ideals, Math. Comput. Simulation, 1998, vol. 45, pp. 519–542.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gerdt, V. P. and Blinkov, Yu. A., Minimal Involutive Bases, Math. Comput. Simulation, 1998, vol. 45, pp. 543–560.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gerdt, V. P., Yanovich, D. A., and Blinkov, Yu. A., Fast Search for the Janet Divisor, Programmirovanie, 2001, vol. 27, no. 1, pp. 32–36 [Programming Comput. Software (Engl. Transl.), vol. 27, no. 1, pp. 22–24].MathSciNetGoogle Scholar
  6. 6.
    Semenov, A. S., Pairwise Analysis of Involutive Divisions, Fundamental’naya Prikladnaya Mat., 2003, vol. 9,issue 3, pp. 199–212.MATHGoogle Scholar
  7. 7.
    Calmet, J., Hausdorf, M., and Seiler, W. M., A Constructive Introduction to Involution, Proc. Int. Symp. Applications of Computer Algebra — ISACA 2000, New Dehli, 2001, pp. 33–50.Google Scholar
  8. 8.
    Gerdt, V. P., Blinkov, Yu. A., and Yanovich, D. A., Construction of Janet Bases II: Polynomial Bases, CASC-2001, Berlin: Spinger, 2001, pp. 249–263.Google Scholar
  9. 9.
    Hemmecke, R., Involutive Bases for Polynomial Ideals, Institut für Symbolisches Rechnen, Linz, 2003.Google Scholar
  10. 10.
    Zharkov, A. Yu. and Blinkov, Yu. A., Involutive Bases of Zero-Dimensional Ideals, Preprint of Joint Inst. for Nuclear Research, Dubna, 1994, no. E5-94-318.Google Scholar
  11. 11.
    Blinkov, Yu. A., Method of Separative Monomials for Involutive Divisions, Programmirovanie, 2001, vol. 27, no. 3, pp. 43–45 [Programming Comput. Software (Engl. Transl.), vol. 27, no. 3, pp. 139–141].MathSciNetGoogle Scholar
  12. 12.
    Zharkov, A. Yu., and Blinkov, Yu. A., Involutive Systems of Algebraic Equations, Programmirovanie, 1994.Google Scholar
  13. 13.
    Mikhalev, A. V. and Pankrat’ev, E. V., Komp’yuternaya algebra. Vychisleniya v differentsial’noi i raznostnoi algebre (Computer Algebra: Computations in Differential and Difference Algebra), Moscow: Mosk. Gos. Univ., 1989.Google Scholar
  14. 14.
    Semenov, A. S., Static Properties of Involutive Divisions, Lobachevskie chteniya—2001 (Lobachevskii Readings—2001), Kazan, 2001.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. S. Semenov
    • 1
  • P. A. Zyuzikov
    • 1
  1. 1.Department of Mechanics and MathematicsMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations