Programming and Computer Software

, Volume 32, Issue 2, pp 114–117 | Cite as

Generation of difference schemes for the burgers equation by constructing Gröbner bases

  • Yu. A. Blinkov
  • V. V. Mozzhilkin
Article

Abstract

A system of basic difference relations approximating an original system of equations, which are required for the generation of difference schemes, is given. The use of the Gröbner basis technique made it possible to generate classes of Lax, Lax-Wendroff, and Godunov schemes for the Burgers equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buchberger, B., Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory, Symbolic and Algebraic Computations, Buchberger, B., Collins, G., and Loos, R., Eds., Wien: Springer, 1982. Translated under the title Komp’yuternaya algebra. Simvol’nye i algebraicheskie vychisleniya, Moscow: Mir, 1986.Google Scholar
  2. 2.
    Mikhalev, A.V. and Pankrat’ev, E.V., Komp’yuternaya algebra. Vychisleniya v differential’noi i raznostnoi algebre (Computational Algebra. Computation in Differential and Difference Algebra), Moscow: Mos. Gos. Univ., 1989.Google Scholar
  3. 3.
    Blinkov, Yu.A. and Mozzhilkin, V.V., A Method of Finite Volumes for Higher-Order Equations, in Aerodinamika. Nelineinye problemy (Aerodynamics. Nonlinear Problems), Saratov: SGU, 1997, pp. 140–148.Google Scholar
  4. 4.
    Mozzhilkin, V.V. and Blinkov, Yu.A., Methods for Constructing Difference Schemes for Gas Dynamics, Izv. Saratovskogo Univ., 2001, vol. 1, no. 2, pp. 145–155.Google Scholar
  5. 5.
    Shokin, Yu.I. and Yanenko, N.N., Metod differentsial’nogo priblizheniya. Prilozheniya k gazovoi dinamike (Differential Approximation Method: Application to Gas Dynamics), Novosibirsk: Nauka, 1985.Google Scholar
  6. 6.
    Blinkov, Yu.A., Carlos, F.C., Gerdt, V.P., Plesken, W., and Roberts, D., The MAPLE Package “Janet”: 1. Polynomial Systems, Proc. of the Int. Conf. “Computer Algebra in Scientific Computing” (CASC’2003), pp. 31–40.Google Scholar
  7. 7.
    Blinkov, Yu.A., Carlos, F.C., Gerdt, V.P., Plesken, W., and Roberts, D., The MAPLE Package “Janet”: 2. Linear Partial Differential Equations, Proc. of the Int. Conf. “Computer Algebra in Scientific Computing” (CASC’2003), pp. 41–54.Google Scholar
  8. 8.
  9. 9.
    Gerdt, V.P. and Blinkov, Yu.A., Involutive Bases of Polynomial Ideals, Math. Comp. Simul., 1998, vol. 45, pp. 519–542.CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • Yu. A. Blinkov
    • 1
  • V. V. Mozzhilkin
    • 1
  1. 1.Department of Mechanics and MathematicsSaratov State UniversitySaratovRussia

Personalised recommendations